Abstract
We introduce q-analog of Schröder matrix and discuss its domains in the spaces c and
References
[1] H. Aktuğlu and Ş. Bekar, q-Cesáro matrix and q-statistical convergence, J. Comput. Appl. Math. 235 (2011), no. 16, 4717–4723. 10.1016/j.cam.2010.08.018Search in Google Scholar
[2] A. Alotaibi, T. Yaying and S. A. Mohiuddine, Sequence spaces and spectrum of q-difference operator of second order, Symmetry 14 (2022), no. 6, Paper No. 1155. 10.3390/sym14061155Search in Google Scholar
[3] K. I. Atabey, M. Çınar and M. Et, q-Fibonacci sequence spaces and related matrix transformations, J. Appl. Math. Comput. 69 (2023), no. 2, 2135–2154. 10.1007/s12190-022-01825-9Search in Google Scholar
[4] M. Ayman Mursaleen, A note on matrix domains of Copson matrix of order α and compact operators, Asian-Eur. J. Math. 15 (2022), no. 7, Article ID 2250140. 10.1142/S1793557122501406Search in Google Scholar
[5] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Some combinatorial interpretations of q-analogs of Schröder numbers, Ann. Comb. 3 (1999), no. 2–4, 171–190. 10.1007/BF01608782Search in Google Scholar
[6] F. Başar, Summability Theory and its Applications, Bentham Science, Oak Park, 2012. 10.2174/97816080545231120101Search in Google Scholar
[7] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukraïn. Mat. Zh. 55 (2003), no. 1, 108–118; translation in Ukrainian Math. J. 55 (2003), no. 1, 136–147. Search in Google Scholar
[8]
M. Basarir and E. E. Kara,
On compact operators on the Riesz
[9] M. Başarir and E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), no. 2, 114–129. 10.15352/afa/1399900200Search in Google Scholar
[10] J. Bustoz and L. F. Gordillo, q-Hausdorff summability, J. Comput. Anal. Appl. 7 (2005), no. 1, 35–48. Search in Google Scholar
[11] M. C. Dağli, Matrix mappings and compact operators for Schröder sequence spaces, Turkish J. Math. 46 (2022), no. 6, 2304–2320. 10.55730/1300-0098.3270Search in Google Scholar
[12] M. C. Dağli, A novel conservative matrix arising from Schröder numbers and its properties, Linear Multilinear Algebra 71 (2023), no. 8, 1338–1351. 10.1080/03081087.2022.2061401Search in Google Scholar
[13] M. C. Dağli and T. Yaying, A study on Fibo–Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness, Georgian Math. J. 32 (2025), no. 1, 55–69. 10.1515/gmj-2024-2021Search in Google Scholar
[14]
B. de Malafosse,
The Banach algebra
[15] S. Demiriz and A. Şahin, q-Cesàro sequence spaces derived by q-analogues, Adv. Math. 5 (2016), no. 2, 97–110. Search in Google Scholar
[16]
M. İlkhan,
A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces c and
[17] F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908), 253–281. 10.1017/S0080456800002751Search in Google Scholar
[18] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. 10.1007/978-1-4613-0071-7Search in Google Scholar
[19] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), no. 5, 1299–1309. 10.1016/j.camwa.2010.06.010Search in Google Scholar
[20] R. Kumar, S. K. Sharma, A. K. Sharma and M. Musarleen, On q-Fibonacci Cesàro sequence spaces by using band matrix, Iran. J. Sci. 49 (2025), no. 1, 201–208. 10.1007/s40995-024-01706-9Search in Google Scholar
[21] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zb. Rad. (Beogr.) 9(17) (2000), 143–234. Search in Google Scholar
[22] S. A. Mohiuddine and B. Hazarika, Sequence Space Theory with Applications, CRC Press, New York, 2022. 10.1201/9781003178200Search in Google Scholar
[23] S. A. Mohiuddine, B. Hazarika and H. K. Nashine, Approximation Theory, Sequence Spaces and Applications, Ind. Appl. Math., Springer, Singapore, 2022. 10.1007/978-981-19-6116-8Search in Google Scholar
[24] S. A. Mohiuddine, K. Raj, M. Mursaleen and A. Alotaibi, Linear isomorphic spaces of fractional-order difference operators, Alexandria Eng. J. 60 (2021), 1155–1164. 10.1016/j.aej.2020.10.039Search in Google Scholar
[25] M. Mursaleen and F. Başar, Sequence Spaces—Topics in Modern Summability Theory, Math. Appl. Model. Eng. Social Sci., CRC Press, Boca Raton, 2020. 10.1201/9781003015116Search in Google Scholar
[26] M. Mursaleen and A. K. Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comput. Math. Appl. 60 (2010), no. 5, 1245–1258. 10.1016/j.camwa.2010.06.005Search in Google Scholar
[27] M. Mursaleen and A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal. 73 (2010), no. 8, 2541–2557. 10.1016/j.na.2010.06.030Search in Google Scholar
[28] M. Mursaleen, S. Tabassum and R. Fatma, On q-statistical summability method and its properties, Iran. J. Sci. Technol. Trans. A Sci. 46 (2022), no. 2, 455–460. 10.1007/s40995-022-01285-7Search in Google Scholar
[29] K. Raj, S. A. Mohiuddine and S. Jasrotia, Characterization of summing operators in multiplier spaces of deferred Nörlund summability, Positivity 27 (2023), no. 1, Paper No. 9. 10.1007/s11117-022-00961-7Search in Google Scholar
[30] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht, Math. Z. 154 (1977), no. 1, 1–16. 10.1007/BF01215107Search in Google Scholar
[31] T. Yaying and F. Başar, Matrix transformation and compactness on q-Catalan sequence spaces, Numer. Funct. Anal. Optim. 45 (2024), no. 4–6, 373–393. 10.1080/01630563.2024.2349003Search in Google Scholar
[32] T. Yaying, B. Hazarika, P. Baliarsingh and M. Mursaleen, Cesàro q-difference sequence spaces and spectrum of weighted q-difference operator, Bull. Iranian Math. Soc. 50 (2024), no. 2, Paper No. 23. 10.1007/s41980-024-00862-3Search in Google Scholar
[33] T. Yaying, B. Hazarika and F. Başar, On some new sequence spaces defined by q-Pascal matrix, Trans. A. Razmadze Math. Inst. 176 (2022), no. 1, 99–113. Search in Google Scholar
[34]
T. Yaying, B. Hazarika and L. Mei,
On the domain of q-Euler matrix in c and
[35]
T. Yaying, B. Hazarika and M. Mursaleen,
On generalized
[36]
T. Yaying, B. Hazarika and M. Mursaleen,
On sequence space derived by the domain of q-Cesàro matrix in
[37] T. Yaying, M. İlkhan Kara, B. Hazarika and E. E. Kara, A study on q-analogue of Catalan sequence spaces, Filomat 37 (2023), no. 3, 839–850. 10.2298/FIL2303839YSearch in Google Scholar
[38] T. Yaying, E. Savaş and M. Mursaleen, A novel study on q-Fibonacci sequence spaces and their geometric properties, Iran. J. Sci. 48 (2024), no. 4, 939–951. 10.1007/s40995-024-01644-6Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston