Startseite Oscillatory singular integrals with radial rough kernel and fewnomials phases
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillatory singular integrals with radial rough kernel and fewnomials phases

  • Boyu Jiang EMAIL logo
Veröffentlicht/Copyright: 17. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study oscillatory singular integrals with radial rough kernels:

T Q , h f ( x ) =  p.v.  n f ( x - y ) Ω ( y ) h ( | y | ) | y | n e i Q ( | y | ) d y ,

where Q ( t ) is a real polynomial on , Ω H ( S n - 1 ) is a homogeneous function of degree zero on the unit sphere S n - 1 with vanishing mean value, and h satisfies the following conditions:

1 R 0 R | h ( t ) | q d t C , | 1 p - 1 2 | < min { 1 2 , 1 q } ,

where C is a constant independent of R > 0 , and h is the radial rough kernel. Under the assumption Ω H 1 ( S n - 1 ) , we prove that T Q , h is bounded on the Lebesgue space L p for 1 < p < , provided that h satisfies aforementioned condition. The methods we mainly use are created by S. Guo.

MSC 2020: 42B20; 42B30

References

[1] H. Al-Qassem, L. Cheng, A. Fukui and Y. Pan, Weighted estimates for oscillatory singular integrals, J. Funct. Spaces Appl. 2013 (2013), Article ID 543748. 10.1155/2013/543748Suche in Google Scholar

[2] S. Chanillo and M. Christ, Weak ( 1 , 1 ) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), no. 1, 141–155. 10.1215/S0012-7094-87-05508-6Suche in Google Scholar

[3] J. Chen, D. Fan and Y. Ying, Certain operators with rough singular kernels, Canad. J. Math. 55 (2003), no. 3, 504–532. 10.4153/CJM-2003-021-4Suche in Google Scholar

[4] Y. Ding and H. Liu, L p boundedness of Carleson type maximal operators with nonsmooth kernels, Tohoku Math. J. (2) 63 (2011), no. 2, 255–267. 10.2748/tmj/1309952088Suche in Google Scholar

[5] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), no. 2, 869–880. 10.1090/S0002-9947-1993-1089418-5Suche in Google Scholar

[6] D. Fan and Y. Pan, A singular integral operator with rough kernel, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3695–3703. 10.1090/S0002-9939-97-04111-7Suche in Google Scholar

[7] C. L. Fefferman, Inequalities for strongly singular convolution operator, Ph.D. Thesis, Princeton University, 1969, Suche in Google Scholar

[8] S. Guo, A remark on oscillatory integrals associated with fewnomials, New York J. Math. 23 (2017), 1733–1738. Suche in Google Scholar

[9] Y. S. Jiang and S. Z. Lu, Oscillatory singular integrals with rough kernel, Harmonic Analysis in China, Math. Appl. 327, Kluwer Academic, Dordrecht (1995), 135–145. 10.1007/978-94-011-0141-7_7Suche in Google Scholar

[10] X. Li and L. Xiao, Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions associated to polynomials, Amer. J. Math. 138 (2016), no. 4, 907–962. 10.1353/ajm.2016.0030Suche in Google Scholar

[11] S. Lu and H. Wu, Oscillatory singular integrals and commutators with rough kernels, Ann. Sci. Math. Québec 27 (2003), no. 1, 47–66. Suche in Google Scholar

[12] J. Ma, C. Wang and H. Wu, A class of oscillatory singular integrals with rough kernels and fewnomials phases, J. Fourier Anal. Appl. 30 (2024), no. 1, Paper No. 10. 10.1007/s00041-023-10066-8Suche in Google Scholar

[13] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. 10.1016/0022-1236(87)90064-4Suche in Google Scholar

[14] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), no. 1, 56–84. 10.1016/0022-1236(88)90132-2Suche in Google Scholar

[15] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University, Princeton, 1993. 10.1515/9781400883929Suche in Google Scholar

Received: 2024-10-09
Revised: 2025-03-09
Accepted: 2025-03-21
Published Online: 2025-06-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2041/html
Button zum nach oben scrollen