Startseite Approximation by matrix transform means with respect to the character system of the group of 2-adic integers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Approximation by matrix transform means with respect to the character system of the group of 2-adic integers

  • István Blahota EMAIL logo
Veröffentlicht/Copyright: 27. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we discuss the rate of the approximation by matrix transform means of Fourier series with respect to the character system of the group of 2-adic integers in L p ( I ) spaces ( 1 p < ) and in C ( I ) . Moreover, we give an application for functions in Lipschitz classes Lip ( α , p , I ) ( α > 0 , 1 p < ) and Lip ( α , C ( I ) ) ( α > 0 ).

MSC 2010: 42C10

References

[1] L. Baramidze, L.-E. Persson, G. Tephnadze and P. Wall, Sharp H p - L p type inequalities of weighted maximal operators of Vilenkin–Nörlund means and its applications, J. Inequal. Appl. 2016 (2016), Paper No. 242. 10.1186/s13660-016-1182-1Suche in Google Scholar

[2] I. Blahota, Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers, Georgian Math. J. 19 (2012), no. 3, 417–425. 10.1515/gmj-2012-0025Suche in Google Scholar

[3] I. Blahota and G. Gát, Almost everywhere convergence of Marcinkiewicz means of Fourier series on the group of 2-adic integers, Studia Math. 191 (2009), no. 3, 215–222. 10.4064/sm191-3-3Suche in Google Scholar

[4] I. Blahota and K. Nagy, Approximation by Θ-means of Walsh-Fourier series, Anal. Math. 44 (2018), no. 1, 57–71. 10.1007/s10476-018-0106-3Suche in Google Scholar

[5] I. Blahota, K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz Θ-means of double Walsh–Fourier series, Math. Inequal. Appl. 22 (2019), no. 3, 837–853. 10.7153/mia-2019-22-58Suche in Google Scholar

[6] I. Blahota and G. Tephnadze, A note on maximal operators of Vilenkin–Nörlund means, Acta Math. Acad. Paedagog. Nyházi. (N. S.) 32 (2016), no. 2, 203–213. Suche in Google Scholar

[7] A. Chripkó, Weighted approximation via Θ-summations of Fourier–Jacobi series, Studia Sci. Math. Hungar. 47 (2010), no. 2, 139–154. 10.1556/sscmath.2009.1121Suche in Google Scholar

[8] T. Eisner, The θ-summation on local fields, Ann. Univ. Sci. Budapest. Sect. Comput. 33 (2010), 137–156. Suche in Google Scholar

[9] S. Fridli, P. Manchanda and A. H. Siddiqi, Approximation by Walsh–Nörlund means, Acta Sci. Math. (Szeged) 74 (2008), no. 3–4, 593–608. Suche in Google Scholar

[10] G. Gát, On the almost everywhere convergence of Fejér means of functions on the group of 2-adic integers, J. Approx. Theory 90 (1997), no. 1, 88–96. 10.1006/jath.1996.3067Suche in Google Scholar

[11] G. Gát, Almost everywhere convergence of Cesàro means of Fourier series on the group of 2-adic integers, Acta Math. Hungar. 116 (2007), no. 3, 209–221. 10.1007/s10474-007-6019-4Suche in Google Scholar

[12] G. Gát and K. Nagy, On the maximal operators of Fejér means with respect to the character system of the group of 2-adic integers in Hardy spaces, Math. Notes 98 (2015), no. 1–2, 68–77. 10.1134/S0001434615070068Suche in Google Scholar

[13] U. Goginava, On the approximation properties of Cesàro means of negative order of Walsh–Fourier series, J. Approx. Theory 115 (2002), no. 1, 9–20. 10.1006/jath.2001.3632Suche in Google Scholar

[14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I, Grundlehren Math. Wiss. 115, Academic Press, New York, 1963. 10.1007/978-3-662-40409-6Suche in Google Scholar

[15] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II, Grundlehren Math. Wiss. 152, Academic Press, New York, 1970. 10.1007/978-3-662-26755-4Suche in Google Scholar

[16] M. A. Jastrebova, Approximation of functions satisfying a Lipschitz condition by arithmetic means of their Walsh–Fourier series, Mat. Sb. (N. S.) 71 (113) (1966), 214–226. Suche in Google Scholar

[17] N. Memić, L. E. Persson and G. Tephnadze, A note on the maximal operators of Vilenkin–Nörlund means with non-increasing coefficients, Studia Sci. Math. Hungar. 53 (2016), no. 4, 545–556. 10.1556/012.2016.53.4.1342Suche in Google Scholar

[18] F. Móricz and B. E. Rhoades, Approximation by weighted means of Walsh–Fourier series, Internat. J. Math. Math. Sci. 19 (1996), no. 1, 1–8. 10.1155/S0161171296000014Suche in Google Scholar

[19] F. Móricz and A. H. Siddiqi, Approximation by Nörlund means of Walsh–Fourier series, J. Approx. Theory 70 (1992), no. 3, 375–389. 10.1016/0021-9045(92)90067-XSuche in Google Scholar

[20] K. Nagy, Approximation by Nörlund means of quadratical partial sums of double Walsh–Fourier series, Anal. Math. 36 (2010), no. 4, 299–319. 10.1007/s10476-010-0404-xSuche in Google Scholar

[21] K. Nagy, Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions, Math. Inequal. Appl. 15 (2012), no. 2, 301–322. 10.7153/mia-15-25Suche in Google Scholar

[22] F. Schipp and W. R. Wade, Norm convergence and summability of Fourier series with respect to certain product systems, Approximation Theory (Memphis 1991), Lecture Notes Pure Appl. Math. 138, Dekker, New York (1992), 437–452. Suche in Google Scholar

[23] F. Schipp, W. R. Wade and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. Suche in Google Scholar

[24] C. Shavardenidze, On the convergence of Cesáro means of negative order of Vilenkin–Fourier series, Studia Sci. Math. Hungar. 56 (2019), no. 1, 22–44. 10.1556/012.2019.56.1.1422Suche in Google Scholar

[25] V. A. Skvorcov, Some estimates of approximation of functions by Cesàro means of Fourier–Walsh series, Mat. Zametki 29 (1981), no. 4, 539–547. 10.1007/BF01343535Suche in Google Scholar

[26] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University, Princeton, 1975. Suche in Google Scholar

[27] T. Tepnadze, On the approximation properties of Cesàro means of negative order of Vilenkin–Fourier series, Studia Sci. Math. Hungar. 53 (2016), no. 4, 532–544. 10.1556/012.2016.53.4.1350Suche in Google Scholar

[28] F. Weisz, θ-summability of Fourier series, Acta Math. Hungar. 103 (2004), no. 1–2, 139–175. 10.1023/B:AMHU.0000028241.87331.c5Suche in Google Scholar

[29] S. Yano, On approximation by Walsh functions, Proc. Amer. Math. Soc. 2 (1951), 962–967. 10.1090/S0002-9939-1951-0045235-4Suche in Google Scholar

[30] A. Zygmund, Trigonometric Series. Vol. I, II, 3rd ed., Cambridge Math. Libr., Cambridge University, Cambridge, 2002. Suche in Google Scholar

Received: 2022-03-04
Revised: 2022-09-15
Accepted: 2022-09-19
Published Online: 2023-01-27
Published in Print: 2023-04-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2215/html?lang=de
Button zum nach oben scrollen