Startseite A generalization of practical stability of nonlinear impulsive systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A generalization of practical stability of nonlinear impulsive systems

  • Boulbaba Ghanmi EMAIL logo
Veröffentlicht/Copyright: 10. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce a new type of stability for nonlinear impulsive systems of differential equations, namely practical h-stability. By using the Lyapunov stability theory, some sufficient conditions which guarantee practical h-stability are established. Our original results generalize well-known fundamental stability results, practical stability, practical exponential stability and practical asymptotic stability for nonlinear time-varying impulsive systems. Then two classes of nonlinear impulsive systems, namely perturbed and cascaded impulsive systems, are discussed. Furthermore, the problem of practical h-stabilization for certain classes of nonlinear impulsive systems is considered. Finally, two numerical examples are given to show the effectiveness of our theoretical results.

MSC 2010: 34A37; 34D20

References

[1] D. D. Bainov, A. B. Dishliev and I. M. Stamova, Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics, ANZIAM J. 43 (2002), no. 4, 525–539. 10.1017/S1446181100012128Suche in Google Scholar

[2] D. D. Baĭnov and P. S. Simeonov, Systems with Impulse Effect. Stability, Theory and Applications, Ellis Horwood Ser. Math. Appl., Ellis Horwood, New York, 1989. Suche in Google Scholar

[3] D. D. Baĭnov and P. S. Simeonov, Impulsive Differential Equations. Properties of the Solutions, Ser. Adv. Math. Appl. Sci. 28, World Scientific, River Edge, 1995. 10.1142/2413Suche in Google Scholar

[4] C. I. Byrnes, F. Celani and A. Isidori, Omega-limit sets of a class of nonlinear systems that are semiglobally practically stabilized, Internat. J. Robust Nonlinear Control 15 (2005), no. 7, 315–333. 10.1002/rnc.991Suche in Google Scholar

[5] T. Caraballo, M. A. Hammami and L. Mchiri, Practical asymptotic stability of nonlinear stochastic evolution equations, Stoch. Anal. Appl. 32 (2014), no. 1, 77–87. 10.1080/07362994.2013.843142Suche in Google Scholar

[6] T. Caraballo, M. A. Hammami and L. Mchiri, Practical exponential stability in mean square of stochastic partial differential equations, Collect. Math. 66 (2015), no. 2, 261–271. 10.1007/s13348-014-0124-9Suche in Google Scholar

[7] A. Chaillet, A. Loría and R. Kelly, Robustness of PID-controlled manipulators vis-à-vis actuator dynamics and external disturbances, Eur. J. Control 13 (2007), no. 6, 563–582. 10.3166/ejc.13.563-576Suche in Google Scholar

[8] S. K. Choi, Y. H. Goo and N. J. Koo, Lipschitz and exponential asymptotic stability for nonlinear functional-differential systems, Dynam. Systems Appl. 6 (1997), no. 3, 397–410. Suche in Google Scholar

[9] S. K. Choi and N. Koo, Variationally stable impulsive differential systems, Dyn. Syst. 30 (2015), no. 4, 435–449. 10.1080/14689367.2015.1068742Suche in Google Scholar

[10] S. K. Choi and N. Koo, A converse theorem on h-stability via impulsive variational systems, J. Korean Math. Soc. 53 (2016), no. 5, 1115–1131. 10.4134/JKMS.j150428Suche in Google Scholar

[11] S. K. Choi, N. Koo and C. Ryu, Stability of linear impulsive differential equations via t -similarity, J. Chungcheong Math. Soc. 26 (2013), no. 4, 811–811. 10.14403/jcms.2013.26.4.811Suche in Google Scholar

[12] S. K. Choi and N. J. Koo, Asymptotic equivalence between two linear Volterra difference systems, Comput. Math. Appl. 47 (2004), no. 2–3, 461–471. 10.1016/S0898-1221(04)90038-7Suche in Google Scholar

[13] S. K. Choi, N. J. Koo and H. S. Ryu, h-stability of differential systems via t -similarity, Bull. Korean Math. Soc. 34 (1997), no. 3, 371–383. Suche in Google Scholar

[14] A. B. Dishliev and D. D. Baĭnov, Dependence upon initial conditions and parameter of solutions of impulsive differential equations with variable structure, Internat. J. Theoret. Phys. 29 (1990), no. 6, 655–675. 10.1007/BF00672039Suche in Google Scholar

[15] M. Dlala, B. Ghanmi and M. A. Hammami, Exponential practical stability of nonlinear impulsive systems: Converse theorem and applications, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 21 (2014), no. 1, 37–64. Suche in Google Scholar

[16] M. Dlala and M. A. Hammami, Uniform exponential practical stability of impulsive perturbed systems, J. Dyn. Control Syst. 13 (2007), no. 3, 373–386. 10.1007/s10883-007-9020-xSuche in Google Scholar

[17] F. G. Garashchenko and V. V. Pichkur, Properties of optimal sets of practical stability of differential inclusions. I (in Russian), Problemy Upravlen. Inform. (2006), no. 1–2, 153–163. Suche in Google Scholar

[18] G. K. Kulev and D. D. Baĭnov, Lipschitz stability of impulsive systems of differential equations, Dynam. Stability Systems 8 (1993), no. 1, 1–17. 10.1080/02681119308806145Suche in Google Scholar

[19] V. Lakshmikantham, D. D. Baĭnov and P. S. Simeonov, Theory of Impulsive Differential Equations, Ser. Mod. Appl. Math. 6, World Scientific, Teaneck, 1989. 10.1142/0906Suche in Google Scholar

[20] V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Monogr. Textb. Pure Appl. Math. 125, Marcel Dekker, New York, 1989. Suche in Google Scholar

[21] V. Lakshmikantham, S. Leela and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World Scientific, Teaneck, 1990. 10.1142/1192Suche in Google Scholar

[22] J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method, with Applications, Math. Sci. Eng. 4, Academic Press, New York, 1961. Suche in Google Scholar

[23] B. Liu and D. J. Hill, Uniform stability and ISS of discrete-time impulsive hybrid systems, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 2, 319–333. 10.1016/j.nahs.2009.05.002Suche in Google Scholar

[24] A. A. Martynyuk, Exponential stability with respect to some of the variables (in Russian), Dokl. Akad. Nauk 331 (1993), no. 1, 17–19; translation in Russian Acad. Sci. Dokl. Math. 48 (1994), no. 1, 17–20. Suche in Google Scholar

[25] A. A. Martynyuk, Advances in Stability Theory at the end of the 20th Century, Stab. Control Theory Methods Appl. 13, Taylor & Francis, London, 2003. 10.1201/b12543Suche in Google Scholar

[26] A. A. Martynyuk and Z. Sun, Practical Stability and its Applications (in Chinese), Science Press, Beijing, 2003. Suche in Google Scholar

[27] R. Medina and M. Pinto, Variationally stable difference equations, Nonlinear Anal. 30 (1997), no. 2, 1141–1152. 10.1016/S0362-546X(96)00111-3Suche in Google Scholar

[28] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), no. 1–2, 161–175. 10.1524/anly.1984.4.12.161Suche in Google Scholar

[29] M. Pinto, Stability of nonlinear differential systems, Appl. Anal. 43 (1992), no. 1–2, 1–20. 10.1080/00036819208840049Suche in Google Scholar

[30] M. Pinto, Asymptotic behavior of differential systems with impulse effect, Nonlinear Anal. 30 (1997), no. 2, 1133–1140. 10.1016/S0362-546X(97)00302-7Suche in Google Scholar

[31] T. Yang, Impulsive Control Theory, Lect. Notes Control Inf. Sci. 272, Springer, Berlin, 2001. Suche in Google Scholar

[32] T. Yoshizawa, Stability Theory by Liapunov’s Second Method, Publ. Math. Soc. Japan 9, Mathematical Society of Japan, Tokyo, 1966. Suche in Google Scholar

Received: 2022-01-20
Accepted: 2022-05-25
Published Online: 2023-01-10
Published in Print: 2023-04-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2201/html
Button zum nach oben scrollen