Startseite Properties of rational Fourier series and generalized Wiener class
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of rational Fourier series and generalized Wiener class

  • Hardeepbhai J. Khachar ORCID logo EMAIL logo und Rajendra G. Vyas ORCID logo
Veröffentlicht/Copyright: 24. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The order of rational Fourier coefficients for functions of Akhobadze variation, B Λ ( p ( n ) , φ , 𝕋 ¯ ) , is estimated. Extending the definition of Akhobadze class for multiple variables, the result of one variable is extended for multiple variables.

MSC 2010: 42C10; 46B07

Award Identifier / Grant number: 09/0114(11228)/2021-EMR-I

Funding statement: The work of the first author is supported by Council of Scientific & Industrial Research (CSIR), India through JRF (File no. 09/0114(11228)/2021-EMR-I).

Acknowledgements

The authors are grateful to the anonymous referee for providing insightful comments and useful suggestions for the betterment of this paper.

References

[1] T. Akhobadze, A generalization of bounded variation, Acta Math. Hungar. 97 (2002), no. 3, 223–256. 10.1023/A:1020807128736Suche in Google Scholar

[2] J. Bokor and F. Schipp, Approximate identification in Laguerre and Kautz bases, Automatica J. IFAC 34 (1998), no. 4, 463–468. 10.1016/S0005-1098(97)00201-XSuche in Google Scholar

[3] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njå stad, Orthogonal Rational Functions, Cambridge Monogr. Appl. Comput. Math. 5, Cambridge University, Cambridge, 1999. 10.1017/CBO9780511530050Suche in Google Scholar

[4] M. M. Džrbašyan, On the theory of series of Fourier in terms of rational functions (in Russian. Armenian summary), Akad. Nauk Armyan. SSR. Izv. Fiz.-Mat. Estest. Tehn. Nauki 9 (1956), no. 7, 3–28. Suche in Google Scholar

[5] H. J. Khachar and R. G. Vyas, A note on multiple rational Fourier series, Period. Math. Hungar. (2021), 10.1007/s10998-021-00433-7. 10.1007/s10998-021-00433-7Suche in Google Scholar

[6] H. Kita and K. Yoneda, A generalization of bounded variation, Acta Math. Hungar. 56 (1990), no. 3–4, 229–238. 10.1007/BF01903837Suche in Google Scholar

[7] L. Tan and C. Zhou, On the order of rational Fourier coefficients of various bounded variations, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1737–1743. 10.1080/17476933.2012.712967Suche in Google Scholar

[8] N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. Phys. 3 (1924), 72–94. 10.1002/sapm19243272Suche in Google Scholar

[9] A. Zygmund, Trigonometric Series. Vol. I, 3rd ed., Cambridge Math. Libr., Cambridge University, Cambridge, 2002. Suche in Google Scholar

Published Online: 2022-11-24
Published in Print: 2023-04-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2206/html
Button zum nach oben scrollen