Home Further inequalities for the 𝔸-numerical radius of certain 2 × 2 operator matrices
Article
Licensed
Unlicensed Requires Authentication

Further inequalities for the 𝔸-numerical radius of certain 2 × 2 operator matrices

  • Kais Feki ORCID logo EMAIL logo and Satyajit Sahoo
Published/Copyright: November 24, 2022
Become an author with De Gruyter Brill

Abstract

Let 𝔸 = ( A O O A ) be a 2 × 2 diagonal operator matrix whose each diagonal entry is a bounded positive (semi-definite) linear operator A acting on a complex Hilbert space ℋ . In this paper, we derive several 𝔸 -numerical radius inequalities for 2 × 2 operator matrices whose entries are bounded with respect to the seminorm induced by the positive operator A on ℋ . Some applications of our inequalities are also given.

References

[1] M. Al-Dolat, I. Jaradat and B. Al-Husban, A novel numerical radius upper bounds for 2 × 2 operator matrices, Linear Multilinear Algebra 70 (2022), no. 6, 1173–1184. 10.1080/03081087.2020.1756199Search in Google Scholar

[2] M. L. Arias, G. Corach and M. C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations Operator Theory 62 (2008), no. 1, 11–28. 10.1007/s00020-008-1613-6Search in Google Scholar

[3] M. L. Arias, G. Corach and M. C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008), no. 7, 1460–1475. 10.1016/j.laa.2007.09.031Search in Google Scholar

[4] M. L. Arias, G. Corach and M. C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75 (2009), no. 3–4, 635–653. Search in Google Scholar

[5] H. Baklouti, K. Feki and O. A. M. Sid Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555 (2018), 266–284. 10.1016/j.laa.2018.06.021Search in Google Scholar

[6] H. Baklouti, K. Feki and O. A. M. Sid Ahmed, Joint normality of operators in semi-Hilbertian spaces, Linear Multilinear Algebra 68 (2020), no. 4, 845–866. 10.1080/03081087.2019.1593925Search in Google Scholar

[7] H. Baklouti and S. Namouri, Closed operators in semi-Hilbertian spaces, Linear Multilinear Algebra (2021), 10.1080/03081087.2021.1932709. 10.1080/03081087.2021.1932709Search in Google Scholar

[8] P. Bhunia, K. Feki and K. Paul, A-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iranian Math. Soc. 47 (2021), no. 2, 435–457. 10.1007/s41980-020-00392-8Search in Google Scholar

[9] P. Bhunia, R. K. Nayak and K. Paul, Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (2020), no. 4, 1498–1511. 10.1007/s43036-020-00056-8Search in Google Scholar

[10] P. Bhunia, K. Paul and R. K. Nayak, On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36 (2020), 143–157. Search in Google Scholar

[11] A. Bourhim and M. Mabrouk, a-numerical range on C * -algebras, Positivity 25 (2021), no. 4, 1489–1510. 10.1007/s11117-021-00825-6Search in Google Scholar

[12] C. Conde and K. Feki, On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators, Ric. Mat. (2021), 10.1007/s11587-021-00629-6. 10.1007/s11587-021-00629-6Search in Google Scholar

[13] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. 10.1090/S0002-9939-1966-0203464-1Search in Google Scholar

[14] M. Faghih-Ahmadi and F. Gorjizadeh, A-numerical radius of A-normal operators in semi-Hilbertian spaces, Ital. J. Pure Appl. Math. (2016), no. 36, 73–78. Search in Google Scholar

[15] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. (Basel) 115 (2020), no. 5, 535–544. 10.1007/s00013-020-01482-zSearch in Google Scholar

[16] K. Feki, On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra Appl. 603 (2020), 313–328. 10.1016/j.laa.2020.06.015Search in Google Scholar

[17] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11 (2020), no. 4, 929–946. 10.1007/s43034-020-00064-ySearch in Google Scholar

[18] K. Feki, Generalized numerical radius inequalities of operators in Hilbert spaces, Adv. Oper. Theory 6 (2021), no. 1, Paper No. 6. Search in Google Scholar

[19] K. Feki, Some bounds for the 𝔸 -numerical radius of certain 2 × 2 operator matrices, Hacet. J. Math. Stat. 50 (2021), no. 3, 795–810. 10.15672/hujms.730574Search in Google Scholar

[20] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math. Soc. 58 (2021), no. 6, 1385–1405. 10.1007/s43036-020-00099-xSearch in Google Scholar

[21] K. Feki, Some A-spectral radius inequalities for A-bounded Hilbert space operators, Banach J. Math. Anal. 16 (2022), no. 2, Paper No. 31. 10.1007/s43037-022-00185-7Search in Google Scholar

[22] K. Feki, Some 𝔸 -numerical radius inequalities for d × d operator matrices, Rend. Circ. Mat. Palermo (2) 71 (2022), no. 1, 85–103. 10.1007/s12215-021-00623-9Search in Google Scholar

[23] K. Feki and F. Kittaneh, Some new refinements of generalized numerical radius inequalities for Hilbert space operators, Mediterr. J. Math. 19 (2022), no. 1, Paper No. 17. 10.1007/s00009-021-01927-xSearch in Google Scholar

[24] O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for commutators of Hilbert space operators, Numer. Funct. Anal. Optim. 32 (2011), no. 7, 739–749. 10.1080/01630563.2011.580875Search in Google Scholar

[25] O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for 2 × 2 operator matrices, Studia Math. 210 (2012), no. 2, 99–115. 10.4064/sm210-2-1Search in Google Scholar

[26] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991. 10.1017/CBO9780511840371Search in Google Scholar

[27] F. Kittaneh and S. Sahoo, On 𝔸 -numerical radius equalities and inequalities for certain operator matrices, Ann. Funct. Anal. 12 (2021), no. 4, Paper No. 52. 10.1007/s43034-021-00137-6Search in Google Scholar

[28] H. Qiao, G. Hai and E. Bai, A-numerical radius and A-norm inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra (2021), 10.1080/03081087.2021.1971599. 10.1080/03081087.2021.1971599Search in Google Scholar

[29] N. C. Rout and D. Mishra, Further results on A-numerical radius inequalities, Ann. Funct. Anal. 13 (2022), no. 1, Paper No. 13. 10.1007/s43034-021-00156-3Search in Google Scholar

[30] N. C. Rout, S. Sahoo and D. Mishra, On 𝔸 -numerical radius inequalities for 2 × 2 operator matrices, Linear Multilinear Algebra 70 (2022), no. 14, 2672–2692. Search in Google Scholar

[31] A. Saddi, A-normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (2012), no. 1, Paper No. 5. Search in Google Scholar

[32] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019), 159–183. 10.1016/j.laa.2019.05.012Search in Google Scholar

Received: 2022-04-15
Revised: 2022-07-22
Accepted: 2022-07-27
Published Online: 2022-11-24
Published in Print: 2023-04-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2204/html
Scroll to top button