Startseite Some identities on degenerate hyperharmonic numbers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some identities on degenerate hyperharmonic numbers

  • Taekyun Kim EMAIL logo und Dae San Kim
Veröffentlicht/Copyright: 11. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this paper is to investigate some properties, recurrence relations and identities involving degenerate hyperharmonic numbers, hyperharmonic numbers and degenerate harmonic numbers. In particular, we derive an explicit expression of the degenerate hyperharmonic numbers in terms of the degenerate harmonic numbers. This is a degenerate version of the corresponding identity representing the hyperharmonic numbers in terms of harmonic numbers due to Conway and Guy.

MSC 2010: 11B83; 05A19

References

[1] A. Bayad and Y. Simsek, Values of twisted Barnes zeta functions at negative integers, Russ. J. Math. Phys. 20 (2013), no. 2, 129–137. 10.1134/S1061920813020015Suche in Google Scholar

[2] L. Carlitz, A degenerate Staudt–Clausen theorem, Arch. Math. (Basel) 7 (1956), 28–33. 10.1007/BF01900520Suche in Google Scholar

[3] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51–88. Suche in Google Scholar

[4] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, revised and enlarged ed., D. Reidel Publishing, Dordrecht, 1974. Suche in Google Scholar

[5] J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York, 1996. 10.1007/978-1-4612-4072-3Suche in Google Scholar

[6] G. B. Djordjevic and G. V. Milovanovic, Special Classes of Polynomials, University of Nis, Faculty of Technology, Leskovac, 2014, http://www.mi.sanu.ac.rs/~gvm/Teze/Special. Suche in Google Scholar

[7] T. Kim and D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl. 487 (2020), no. 2, Article ID 124017. 10.1016/j.jmaa.2020.124017Suche in Google Scholar

[8] T. Kim and D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys. 28 (2021), no. 3, 342–355. 10.1134/S1061920821030079Suche in Google Scholar

[9] T. Kim and D. S. Kim, On some degenerate differential and degenerate difference operators, Russ. J. Math. Phys. 29 (2022), no. 1, 37–46. 10.1134/S1061920822010046Suche in Google Scholar

[10] T. Kim and D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, preprint (2022), https://arxiv.org/abs/2205.01928. Suche in Google Scholar

[11] T. Kim, D. S. Kim, L.-C. Jang, H. Lee and H. Kim, Representations of degenerate Hermite polynomials, Adv. in Appl. Math. 139 (2022), Article ID 102359. 10.1016/j.aam.2022.102359Suche in Google Scholar

[12] T. Kim, D. S. Kim, H. K. Kim and H. Lee, Some properties on degenerate Fubini polynomials, Appl. Math. Sci. Eng. 30 (2022), no. 1, 235–248. 10.1080/27690911.2022.2056169Suche in Google Scholar

[13] T. Kim, D. S. Kim, H. Lee, S. Park and J. Kwon, New properties on degenerate Bell polynomials, Complexity 2021 (2021), Article ID 7648994. 10.1186/s13662-021-03460-3Suche in Google Scholar

[14] G. V. Milovanović, Special cases of orthogonal polynomials on the semicircle and applications in numerical analysis, Bull. Cl. Sci. Math. Nat. Sci. Math. (2019), no. 44, 1–28. Suche in Google Scholar

[15] S. Roman, The umbral calculus, Pure Appl. Math. 111, Academic Press, New York, 1984. Suche in Google Scholar

[16] Y. Simsek, Construction of generalized Leibnitz type numbers and their properties, Adv. Stud. Contemp. Math. (Kyungshang) 31 (2021), no. 3, 311–323. Suche in Google Scholar

[17] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis—An Introduction to the General Theory of Infinite Processes and of Analytic Functions with an Account of the Principal Transcendental Functions, 5th ed., Cambridge University Press, Cambridge, 2021. Suche in Google Scholar

Received: 2022-06-30
Accepted: 2022-09-07
Published Online: 2022-11-11
Published in Print: 2023-04-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2203/html?lang=de
Button zum nach oben scrollen