Startseite On inclusion properties of discrete Morrey spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On inclusion properties of discrete Morrey spaces

  • Hendra Gunawan , Denny Ivanal Hakim EMAIL logo und Mochammad Idris
Veröffentlicht/Copyright: 12. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We discuss a necessary condition for inclusion relations of weak type discrete Morrey spaces which can be seen as an extension of the results in [H. Gunawan, E. Kikianty and C. Schwanke, Discrete Morrey spaces and their inclusion properties, Math. Nachr. 291 2018, 8–9, 1283–1296] and [D. D. Haroske and L. Skrzypczak, Morrey sequence spaces: Pitt’s theorem and compact embeddings, Constr. Approx. 51 2020, 3, 505–535]. We also prove a proper inclusion from weak type discrete Morrey spaces into discrete Morrey spaces. In addition, we give a necessary condition for this inclusion. Some connections between the inclusion properties of discrete Morrey spaces and those of Morrey spaces are also discussed.

MSC 2010: 42B35; 46A45; 46B45

Funding statement: The first and second authors are supported by P3MI–ITB Research and Innovation Program 2018.

Acknowledgements

We thank the anonymous reviewer for his/her corrections and comments.

References

[1] F. Chiarenza and M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3–4, 273–279. Suche in Google Scholar

[2] H. Gunawan, D. I. Hakim and M. Idris, Proper inclusions of Morrey spaces, Glas. Mat. Ser. III 53(73) (2018), no. 1, 143–151. 10.3336/gm.53.1.10Suche in Google Scholar

[3] H. Gunawan, D. I. Hakim, K. M. Limanta and A. A. Masta, Inclusion properties of generalized Morrey spaces, Math. Nachr. 290 (2017), no. 2–3, 332–340. 10.1002/mana.201500425Suche in Google Scholar

[4] H. Gunawan, D. I. Hakim, E. Nakai and Y. Sawano, On inclusion relation between weak Morrey spaces and Morrey spaces, Nonlinear Anal. 168 (2018), 27–31. 10.1016/j.na.2017.11.005Suche in Google Scholar

[5] H. Gunawan, E. Kikianty and C. Schwanke, Discrete Morrey spaces and their inclusion properties, Math. Nachr. 291 (2018), no. 8–9, 1283–1296. 10.1002/mana.201700054Suche in Google Scholar

[6] H. Gunawan and C. Schwanke, The Hardy–Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math. 16 (2019), no. 1, Paper No. 24. 10.1007/s00009-018-1277-7Suche in Google Scholar

[7] D. D. Haroske and L. Skrzypczak, Embeddings of weighted Morrey spaces, Math. Nachr. 290 (2017), no. 7, 1066–1086. 10.1002/mana.201600165Suche in Google Scholar

[8] D. D. Haroske and L. Skrzypczak, Morrey sequence spaces: Pitt’s theorem and compact embeddings, Constr. Approx. 51 (2020), no. 3, 505–535. 10.1007/s00365-019-09460-7Suche in Google Scholar

[9] E. Kikianty and C. Schwanke, Discrete Morrey spaces are closed subspaces of their continuous counterparts, Function Spaces XII, Banach Center Publ. 119, Polish Academy of Sciences, Warsaw (2019), 223–231. 10.4064/bc119-13Suche in Google Scholar

[10] E. Nakai, Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95–103. 10.1002/mana.19941660108Suche in Google Scholar

[11] L. C. Piccinini, Proprietä di Inclusione e Interpolazione tra Spazi di Morrey e loro Generalizzazioni, Tesi di perfezionamento, Scuola Normale Superior Pisa, Pisa, 1969. Suche in Google Scholar

[12] M. Rosenthal, Morrey-Räume aus der Sicht der Harmonischen Analysis, Master thesis, Friedrich-Schiller-Universität Jena, 2009. Suche in Google Scholar

[13] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535–1544. 10.1007/s10114-005-0660-zSuche in Google Scholar

[14] E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis. I. l 2 estimates for singular Radon transforms, Amer. J. Math. 121 (1999), no. 6, 1291–1336. 10.1353/ajm.1999.0046Suche in Google Scholar

[15] E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis. II. Fractional integration, J. Anal. Math. 80 (2000), 335–355. 10.1007/BF02791541Suche in Google Scholar

Received: 2020-07-10
Revised: 2020-09-29
Accepted: 2020-10-09
Published Online: 2021-11-12
Published in Print: 2022-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2021-2122/html
Button zum nach oben scrollen