Startseite Critical points approaches to a nonlocal elliptic problem driven by 𝑝(đ‘„)-biharmonic operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Critical points approaches to a nonlocal elliptic problem driven by 𝑝(đ‘„)-biharmonic operator

  • Shapour Heidarkhani , Shahin Moradi und Mustafa Avci ORCID logo EMAIL logo
Veröffentlicht/Copyright: 6. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Differential equations with variable exponent arise from the nonlinear elasticity theory and the theory of electrorheological fluids. We study the existence of at least three weak solutions for the nonlocal elliptic problems driven by p ⁹ ( x ) -biharmonic operator. Our technical approach is based on variational methods. Some applications illustrate the obtained results. We also provide an example in order to illustrate our main abstract results. We extend and improve some recent results.

MSC 2010: 35J35; 35J60; 47J30; 58E05

References

[1] S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515–545. 10.1016/j.na.2004.09.026Suche in Google Scholar

[2] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations 244 (2008), no. 12, 3031–3059. 10.1016/j.jde.2008.02.025Suche in Google Scholar

[3] G. Bonanno and G. D’Aguì, Multiplicity results for a perturbed elliptic Neumann problem, Abstr. Appl. Anal. 2010 (2010), Article ID 564363. 10.1155/2010/564363Suche in Google Scholar

[4] G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), no. 1, 1–10. 10.1080/00036810903397438Suche in Google Scholar

[5] G. D’Aguì, S. Heidarkhani and G. Molica Bisci, Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional 𝑝-Laplacian, Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Paper No. 24. Suche in Google Scholar

[6] G. Dai and J. Wei, Infinitely many non-negative solutions for a p ⁱ ( x ) -Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), no. 10, 3420–3430. 10.1016/j.na.2010.07.029Suche in Google Scholar

[7] X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the p ⁱ ( x ) -Laplacian, J. Math. Anal. Appl. 334 (2007), no. 1, 248–260. 10.1016/j.jmaa.2006.12.055Suche in Google Scholar

[8] X. Fan and D. Zhao, On the spaces L p ⁹ ( x ) ⁹ ( Ω ) and W m , p ⁹ ( x ) ⁹ ( Ω ) , J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. 10.1006/jmaa.2000.7617Suche in Google Scholar

[9] J. R. Graef, S. Heidarkhani and L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), no. 3–4, 877–889. 10.1007/s00025-012-0238-xSuche in Google Scholar

[10] M. K. Hamdani, A. Harrabi, F. Mtiri and D. D. Repovƥ, Existence and multiplicity results for a new p ⁹ ( x ) -Kirchhoff problem, Nonlinear Anal. 190 (2020), Article ID 111598. 10.1016/j.na.2019.111598Suche in Google Scholar

[11] S. Heidarkhani, G. A. Afrouzi, M. Ferrara and S. Moradi, Variational approaches to impulsive elastic beam equations of Kirchhoff type, Complex Var. Elliptic Equ. 61 (2016), no. 7, 931–968. 10.1080/17476933.2015.1131681Suche in Google Scholar

[12] S. Heidarkhani, G. A. Afrouzi, S. Moradi and G. Caristi, A variational approach for solving p ⁹ ( x ) -biharmonic equations with Navier boundary conditions, Electron. J. Differential Equations 2017 (2017), Paper No. 25. Suche in Google Scholar

[13] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi and B. Ge, Existence of one weak solution for p ⁹ ( x ) -biharmonic equations with Navier boundary conditions, Z. Angew. Math. Phys. 67 (2016), no. 3, Article ID 73. 10.1007/s00033-016-0668-5Suche in Google Scholar

[14] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi and S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291 (2018), no. 2–3, 326–342. 10.1002/mana.201600425Suche in Google Scholar

[15] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi and S. Moradi, Existence of three weak solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Fixed Point Theory 21 (2020), no. 2, 525–547. 10.24193/fpt-ro.2020.2.38Suche in Google Scholar

[16] S. Heidarkhani, M. Ferrara, A. Salari and G. Caristi, Multiplicity results for p ⁱ ( x ) -biharmonic equations with Navier boundary conditions, Complex Var. Elliptic Equ. 61 (2016), no. 11, 1494–1516. 10.1080/17476933.2016.1182520Suche in Google Scholar

[17] S. Heidarkhani, S. Moradi and S. A. Tersian, Three solutions for second-order boundary-value problems with variable exponents, Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Paper No. 33. 10.14232/ejqtde.2018.1.33Suche in Google Scholar

[18] E. M. Hssini, M. Massar and N. Tsouli, Existence and multiplicity of solutions for a p ⁱ ( x ) -Kirchhoff type problems, Bol. Soc. Parana. Mat. (3) 33 (2015), no. 2, 201–215. 10.5269/bspm.v33i2.24307Suche in Google Scholar

[19] L. Kong, Multiple solutions for fourth order elliptic problems with p ⁱ ( x ) -biharmonic operators, Opuscula Math. 36 (2016), no. 2, 253–264. 10.7494/OpMath.2016.36.2.253Suche in Google Scholar

[20] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev. 32 (1990), no. 4, 537–578. 10.1137/1032120Suche in Google Scholar

[21] F.-F. Liao, S. Heidarkhani and S. Moradi, Multiple solutions for nonlocal elliptic problems driven by p ⁱ ( x ) -biharmonic operator, AIMS Math. 6 (2021), no. 4, 4156–4172. 10.3934/math.2021246Suche in Google Scholar

[22] M. Massar, E. M. Hssini, N. Tsouli and M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (2014), 33–51. 10.22436/jmcs.08.01.04Suche in Google Scholar

[23] Q. Miao, Multiple solutions for nonlocal elliptic systems involving p ⁹ ( x ) -Biharmonic operator, Mathematics 7 (2019), no. 8, Paper No. 756. 10.3390/math7080756Suche in Google Scholar

[24] M. Mihăilescu, Existence and multiplicity of solutions for a Neumann problem involving the p ⁱ ( x ) -Laplace operator, Nonlinear Anal. 67 (2007), no. 5, 1419–1425. 10.1016/j.na.2006.07.027Suche in Google Scholar

[25] G. Molica Bisci and V. D. Rădulescu, Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math. 17 (2015), no. 1, Article ID 1450001. 10.1142/S0219199714500011Suche in Google Scholar

[26] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, 543–549. 10.1007/s10898-009-9438-7Suche in Google Scholar

[27] M. RĆŻĆŸička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000. 10.1007/BFb0104029Suche in Google Scholar

[28] J. Simon, RĂ©gularitĂ© de la solution d’une Ă©quation non linĂ©aire dans R N , JournĂ©es d’Analyse Non LinĂ©aire (Besançon 1977), Lecture Notes in Math. 665, Springer, Berlin (1978), 205–227. 10.1007/BFb0061807Suche in Google Scholar

[29] L. Vilasi, Eigenvalue estimates for stationary p ⁹ ( x ) -Kirchhoff problems, Electron. J. Differential Equations 2016 (2016), Paper No. 186. Suche in Google Scholar

[30] H. Yin and Y. Liu, Existence of three solutions for a Navier boundary value problem involving the p ⁱ ( x ) -biharmonic, Bull. Korean Math. Soc. 50 (2013), no. 6, 1817–1826. 10.4134/BKMS.2013.50.6.1817Suche in Google Scholar

[31] H. Yin and M. Xu, Existence of three solutions for a Navier boundary value problem involving the p ⁱ ( x ) -biharmonic operator, Ann. Polon. Math. 109 (2013), no. 1, 47–58. 10.4064/ap109-1-4Suche in Google Scholar

[32] A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces, Nonlinear Anal. 69 (2008), no. 10, 3629–3636. 10.1016/j.na.2007.10.001Suche in Google Scholar

[33] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer, New York, 1990. 10.1007/978-1-4612-0981-2Suche in Google Scholar

Received: 2020-05-21
Accepted: 2020-07-22
Published Online: 2021-11-06
Published in Print: 2022-02-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2021-2115/html
Button zum nach oben scrollen