Home The incomplete exponential pRp (α,β;z) function with applications
Article
Licensed
Unlicensed Requires Authentication

The incomplete exponential pRp (α,β;z) function with applications

  • Ankit Pal , Ranjan Kumar Jana ORCID logo , Ghazi S. Khammash and Ajay K. Shukla ORCID logo EMAIL logo
Published/Copyright: November 3, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, we are motivated to establish the generalization of a R q p ( α , β ; z ) function in terms of incomplete exponential functions and obtain some properties of an incomplete exponential R q p ( α , β ; z ) function. Further we give generating relations for incomplete exponential R q p ( α , β ; z ) function. Some applications related to ground water pumping (hydrology) modelling and probability theory are also discussed.

Acknowledgements

The authors are grateful to the referee(s) for critical remarks, which led to the improvement of the paper in this present form.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Appl. Math. Ser. 55, U. S. Government, Washington, 1964. Search in Google Scholar

[2] M. A. Chaudhry and A. Qadir, Incomplete exponential and hypergeometric functions with applications to the non central χ 2 -distribution, Comm. Statist. Theory Methods 34 (2005), no. 3, 525–535. 10.1081/STA-200052154Search in Google Scholar

[3] M. P. Chen and H. M. Srivastava, Orthogonality relations and generating functions for Jacobi polynomials and related hypergeometric functions, Appl. Math. Comput. 68 (1995), no. 2–3, 153–188. 10.1016/0096-3003(94)00092-ISearch in Google Scholar

[4] P. C. Consul and G. C. Jain, A generalization of the Poisson distribution, Technometrics 15 (1973), 791–799. 10.1080/00401706.1973.10489112Search in Google Scholar

[5] R. Desai and A. K. Shukla, Some results on function R q p ( α , β ; z ) , J. Math. Anal. Appl. 448 (2017), 187–197. 10.1016/j.jmaa.2016.10.048Search in Google Scholar

[6] R. Desai and A. K. Shukla, Note on the R q p ( α , β ; z ) function, J. Indian Math. Soc. (N. S.) 88 (2021), no. 3–4, 288–297. 10.18311/jims/2021/27835Search in Google Scholar

[7] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. I, McGraw-Hill, New York, 1953. Search in Google Scholar

[8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms. Vol. I, McGraw-Hill Book, New York, 1954. Search in Google Scholar

[9] L. Galué, A generalized Bessel function, Integral Transforms Spec. Funct. 14 (2003), no. 5, 395–401. 10.1080/1065246031000074362Search in Google Scholar

[10] M. S. Hantush, Tables of the function M ( μ , β ) , Professional Paper 102, New Mexico Institute of Mining and Technology, 1961. Search in Google Scholar

[11] M. S. Hantush, Hydraulics of wells, Adv Hydrosci. 1 (1964), 281–432. 10.1016/B978-1-4831-9932-0.50010-3Search in Google Scholar

[12] H. J. Haubold, A. M. Mathai and R. K. Saxena, On fractional kinetic equations, Astrophys. Space Sci 282 (2002), 281–287. 10.1023/A:1021175108964Search in Google Scholar

[13] K. G. Janardan, On a distribution associated with a stochastic process in ecology, Biom. J. 44 (2002), no. 4, 510–522. 10.1002/1521-4036(200206)44:4<510::AID-BIMJ510>3.0.CO;2-KSearch in Google Scholar

[14] K. G. Janardan, D. J. Schaeffer and R. J. Dufrain, A stochastic model for the study of distribution of chromosome aberrations in human and animal cells exposed to radiation or chemicals, Stat. Distributions Sci. Work 6 (1981), 265–277. 10.1007/978-94-009-8555-1_17Search in Google Scholar

[15] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions. Vol. 2, 2nd ed., John Wiley & Sons,New York, 1995. Search in Google Scholar

[16] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes, 2nd ed., Academic Press, New York, 1975. 10.1016/B978-0-08-057041-9.50005-2Search in Google Scholar

[17] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7–15. Search in Google Scholar

[18] E. D. Rainville, Special Functions, The Macmillan, New York, 1960. Search in Google Scholar

[19] R. K. Saxena, A. M. Mathai and H. J. Haubold, On generalized fractional kinetic equations, Phys. A 344 (2004), no. 3–4, 657–664. 10.1016/j.physa.2004.06.048Search in Google Scholar

[20] H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), no. 9, 659–683. 10.1080/10652469.2011.623350Search in Google Scholar

[21] J. H. Steiger and J. C. Lind, Statistically Based Tests for the Number of Common Factors, Psychometric Society, Iowa City, 1980. Search in Google Scholar

[22] M. G. Trefry, A note on Hantush’s integral M ( u , β ) , Water Resour. Res. 41 (2005), 10.1029/2005WR004099. 10.1029/2005WR004099Search in Google Scholar

[23] F. G. Tricomi, Sulla funzione gamma incompleta, Ann. Mat. Pura Appl. (4) 31 (1950), 263–279. 10.1007/BF02428264Search in Google Scholar

[24] W. Venables, Calculation of confidence intervals for noncentrality parameters, J. Roy. Statist. Soc. Ser. B 37 (1975), no. 3, 406–412. 10.1111/j.2517-6161.1975.tb01554.xSearch in Google Scholar

Received: 2020-05-18
Accepted: 2020-06-18
Published Online: 2021-11-03
Published in Print: 2022-02-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2021-2112/html
Scroll to top button