Startseite Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modulus of continuity and convergence of subsequences of Vilenkin–Fejér means in martingale Hardy spaces

  • Giorgi Tutberidze EMAIL logo
Veröffentlicht/Copyright: 21. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we find a necessary and sufficient condition for the modulus of continuity for which subsequences of Fejér means with respect to Vilenkin systems are bounded from the Hardy space H p to the Lebesgue space L p for all 0 < p < 1 2 .

MSC 2010: 42C10; 42B25

Award Identifier / Grant number: PHDF-18-476

Funding statement: The research was supported by Shota Rustaveli National Science Foundation grant PHDF-18-476.

Acknowledgements

The author would like to thank the referee for helpful suggestions which improved the final version of the paper.

References

[1] G. N. Agaev, N. Y. Vilenkin, G. M. Dzhafarli and A. I. Rubinshteĭn, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups (in Russian), “Èlm”, Baku, 1981. Suche in Google Scholar

[2] I. Blahota, G. Gát and U. Goginava, Maximal operators of Fejér means of Vilenkin–Fourier series, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 4, Article ID 149. 10.4064/cm107-2-8Suche in Google Scholar

[3] I. Blahota, G. Gát and U. Goginava, Maximal operators of Fejér means of double Vilenkin–Fourier series, Colloq. Math. 107 (2007), no. 2, 287–296. 10.4064/cm107-2-8Suche in Google Scholar

[4] I. Blahota and G. Tephnadze, Strong convergence theorem for Vilenkin–Fejér means, Publ. Math. Debrecen 85 (2014), no. 1–2, 181–196. 10.5486/PMD.2014.5896Suche in Google Scholar

[5] N. Fujii, A maximal inequality for H 1 -functions on a generalized Walsh–Paley group, Proc. Amer. Math. Soc. 77 (1979), no. 1, 111–116. 10.2307/2042726Suche in Google Scholar

[6] G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory 124 (2003), no. 1, 25–43. 10.1016/S0021-9045(03)00075-3Suche in Google Scholar

[7] U. Goginava, Maximal operators of Fejér means of double Walsh–Fourier series, Acta Math. Hungar. 115 (2007), no. 4, 333–340. 10.1007/s10474-007-5268-6Suche in Google Scholar

[8] U. Goginava and K. Nagy, On the maximal operator of Walsh–Kaczmarz–Fejér means, Czechoslovak Math. J. 61(136) (2011), no. 3, 673–686. 10.1007/s10587-011-0038-6Suche in Google Scholar

[9] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1–2, 155–164. 10.1007/BF01896477Suche in Google Scholar

[10] L.-E. Persson and G. Tephnadze, A sharp boundedness result concerning some maximal operators of Vilenkin–Fejér means, Mediterr. J. Math. 13 (2016), no. 4, 1841–1853. 10.1007/s00009-015-0565-8Suche in Google Scholar

[11] L.-E. Persson, G. Tephnadze and G. Tutberidze, On the boundedness of subsequences of Vilenkin–Fejér means on the martingale Hardy spaces, Oper. Matrices 14 (2020), no. 1, 283–294. 10.7153/oam-2020-14-22Suche in Google Scholar

[12] L.-E. Persson, G. Tephnadze, G. Tutberidze and P. Wall, Some new results concerning strong convergence of Fejér means with respect to Vilenkin systems, Ukraïn. Mat. Zh. 73 (2021), no. 4, 544–555. 10.37863/umzh.v73i4.226Suche in Google Scholar

[13] L.-E. Persson, G. Tephnadze and P. Wall, Maximal operators of Vilenkin–Nörlund means, J. Fourier Anal. Appl. 21 (2015), no. 1, 76–94. 10.1007/s00041-014-9345-2Suche in Google Scholar

[14] L. E. Persson, G. Tephnadze and P. Wall, On an approximation of 2-dimensional Walsh–Fourier series in martingale Hardy spaces, Ann. Funct. Anal. 9 (2018), no. 1, 137–150. 10.1215/20088752-2017-0032Suche in Google Scholar

[15] F. Schipp, W. R. Wade and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. Suche in Google Scholar

[16] P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 27 (1984), 87–101. Suche in Google Scholar

[17] P. Simon, Cesaro summability with respect to two-parameter Walsh systems, Monatsh. Math. 131 (2000), no. 4, 321–334. 10.1007/s006050070004Suche in Google Scholar

[18] F. Šipp, Certain rearrangements of series in the Walsh system (in Russian), Mat. Zametki 18 (1975), no. 2, 193–201. 10.1007/BF01818035Suche in Google Scholar

[19] G. Tephnadze, On the maximal operators of Vilenkin–Fejér means, Turkish J. Math. 37 (2013), no. 2, 308–318. 10.3906/mat-1010-438Suche in Google Scholar

[20] G. Tephnadze, On the maximal operators of Vilenkin–Fejér means on Hardy spaces, Math. Inequal. Appl. 16 (2013), no. 1, 301–312. 10.7153/mia-16-23Suche in Google Scholar

[21] G. Tephnadze, On the maximal operators of Walsh–Kaczmarz–Fejér means, Period. Math. Hungar. 67 (2013), no. 1, 33–45. 10.1007/s10998-013-4617-1Suche in Google Scholar

[22] G. Tephnadze, On the Vilenkin–Fourier coefficients, Georgian Math. J. 20 (2013), no. 1, 169–177. 10.1515/gmj-2013-0007Suche in Google Scholar

[23] G. Tephnadze, Approximation by Walsh–Kaczmarz–Fejér means on the Hardy space, Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), no. 5, 1593–1602. 10.1016/S0252-9602(14)60106-5Suche in Google Scholar

[24] G. Tephnadze, On the partial sums of Walsh–Fourier series, Colloq. Math. 141 (2015), no. 2, 227–242. 10.4064/cm141-2-7Suche in Google Scholar

[25] G. Tephnadze, On the convergence of Fejér means of Walsh–Fourier series in the space H p , Izv. Nats. Akad. Nauk Armenii Mat. 51 (2016), no. 2, 54–70. 10.3103/S1068362316020059Suche in Google Scholar

[26] G. Tephnadze, On the convergence of partial sums with respect to Vilenkin system on the Martingale Hardy spaces, Izv. Nats. Akad. Nauk Armenii Mat. 53 (2018), no. 5, 77–94. 10.3103/S1068362318050072Suche in Google Scholar

[27] G. Tutberidze, A note on the strong convergence of partial sums with respect to Vilenkin system, Izv. Nats. Akad. Nauk Armenii Mat. 54 (2019), no. 6, 81–87. 10.3103/S1068362319060062Suche in Google Scholar

[28] G. Tutberidze, Maximal operators of T means with respect to the Vilenkin system, Nonlinear Stud. 27 (2020), no. 4, 1157–1167. Suche in Google Scholar

[29] N. Vilenkin, On a class of complete orthonormal systems, Bull. Acad. Sci. URSS. Sér. Math. 11 (1947), 363–400. 10.1090/trans2/028/01Suche in Google Scholar

[30] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. 10.1007/BFb0073448Suche in Google Scholar

[31] F. Weisz, Cesàro summability of one- and two-dimensional Walsh–Fourier series, Anal. Math. 22 (1996), no. 3, 229–242. 10.1007/BF02205221Suche in Google Scholar

[32] F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, Approximation Theory and Function Series (Budapest 1995), Bolyai Soc. Math. Stud. 5, János Bolyai Mathematical Society, Budapest (1996), 353–367. Suche in Google Scholar

[33] F. Weisz, Weak type inequalities for the Walsh and bounded Ciesielski systems, Anal. Math. 30 (2004), no. 2, 147–160. 10.1023/B:ANAM.0000033225.98714.4bSuche in Google Scholar

Received: 2019-02-13
Revised: 2020-12-25
Accepted: 2021-02-07
Published Online: 2021-10-21
Published in Print: 2022-02-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2021-2106/html
Button zum nach oben scrollen