Startseite On the modification of the Szaśz–Durrmeyer operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the modification of the Szaśz–Durrmeyer operators

  • Ali Aral , Emre Deniz und Vijay Gupta EMAIL logo
Veröffentlicht/Copyright: 23. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we consider the modification of Szász–Durrmeyer operators based on the Jain basis function. Voronovskaya-type estimates of point-wise convergence along with its quantitative version based on the weighted modulus of smoothness are given. Moreover, a direct approximation theorem for the operators is proved.

MSC 2010: 41A25; 41A30

Acknowledgements

The authors are thankful to the referee for valuable comments leading to overall improvements in the paper.

References

[1] Agratini O., On an approximation process of integral type, Appl. Math. Comput. 236 (2014), 195–201. 10.1016/j.amc.2014.03.052Suche in Google Scholar

[2] Doğru O., On a certain family of linear positive operators, Turkish J. Math. 21 (1997), no. 4, 387–399. Suche in Google Scholar

[3] Gadjiev A. D., Efendiyev R. O. and Ibikli E., On Korovkin type theorem in the space of locally integrable functions, Czechoslovak Math. J. 53(128) (2003), no. 1, 45–53. 10.1023/A:1022967223553Suche in Google Scholar

[4] Gadzhiev A. D., Theorems of Korovkin type (in Russian), Math. Zametki 20 (1976), no. 5, 781–786; translation in Math. Notes 20 (1976), no. 5, 995–998. 10.1007/BF01146928Suche in Google Scholar

[5] Gupta V., Simultaneous approximation by Szász–Durrmeyer operators, Math. Student 64 (1995), no. 1–4, 27–36. Suche in Google Scholar

[6] Gupta V. and Agarwal R. P., Convergence Estimates in Approximation Theory, Springer, Cham, 2014. 10.1007/978-3-319-02765-4Suche in Google Scholar

[7] Gupta V., Agarwal R. P. and Verma D. K., Approximation for a new sequence of summation-integral type operators, Adv. Math. Sci. Appl. 23 (2013), no. 1, 35–42. Suche in Google Scholar

[8] Gupta V. and Greubel G. C., Moment estimations of new Szász-Mirakyan-Durrmeyer operators, Appl. Math. Comput. 271 (2015), 540–547. 10.1016/j.amc.2015.09.037Suche in Google Scholar

[9] Gupta V. and Pant R. P., Rate of convergence for the modified Szász-Mirakyan operators on functions of bounded variation, J. Math. Anal. Appl. 233 (1999), no. 2, 476–483. 10.1006/jmaa.1999.6289Suche in Google Scholar

[10] Ispir N., On modified Baskakov operators on weighted spaces, Turkish J. Math. 25 (2001), no. 3, 355–365. Suche in Google Scholar

[11] Jain G. C., Approximation of functions by a new class of linear operators, J. Aust. Math. Soc. 13 (1972), 271–276. 10.1017/S1446788700013689Suche in Google Scholar

[12] Szasz O., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research Nat. Bur. Standards 45 (1950), 239–245. 10.6028/jres.045.024Suche in Google Scholar

[13] Tarabie S., On Jain-beta linear operators, Appl. Math. Inf. Sci. 6 (2012), no. 2, 213–216. Suche in Google Scholar

[14] Umar S. and Razi Q., Approximation of function by a generalized Szász operators, Commun. Fac. Sci. Univ. Ankara 34 (1985), 45–52. 10.1501/Commua1_0000000240Suche in Google Scholar

Received: 2014-11-2
Accepted: 2015-1-30
Published Online: 2016-7-23
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0031/pdf
Button zum nach oben scrollen