Home A Tauberian theorem for the product of Abel and Cesàro summability methods
Article
Licensed
Unlicensed Requires Authentication

A Tauberian theorem for the product of Abel and Cesàro summability methods

  • Yılmaz Erdem and İbrahi̇m Çanak EMAIL logo
Published/Copyright: June 23, 2016
Become an author with De Gruyter Brill

Abstract

In this paper, we prove a Tauberian theorem for the product of the Abel method and the Cesàro method of order α, which improves some classical Tauberian theorems for the Abel and Cesàro summability methods.

MSC 2010: 40E05; 40G05; 40G10

References

[1] Abel N. H., Recherches sur la série 1+m1x+m(m-1)1.2x2+, J. Reine Angew. Math. 1 (1826), 311–339. Search in Google Scholar

[2] Amir A., On a converse of Abel’s theorem, Proc. Amer. Math. Soc. 3 (1952), no. 2, 244–256. 10.1090/S0002-9939-1952-0047153-5Search in Google Scholar

[3] Boos J., Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford University Press, Oxford, 2000. 10.1093/oso/9780198501657.001.0001Search in Google Scholar

[4] Borwein D., Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2) 9 (1958), 310–316. 10.1093/qmath/9.1.310Search in Google Scholar

[5] Çanak İ. and Erdem Y., On Tauberian theorems for (A)(C,α) summability method, Appl. Math. Comput. 218 (2011), no. 6, 2829–2836. 10.1016/j.amc.2011.08.026Search in Google Scholar

[6] Çanak İ., Erdem Y. and Totur Ü., Some Tauberian theorems for (A)(C,α) summability method, Math. Comput. Model. 52 (2010), no. 5–6, 738–743. 10.1016/j.mcm.2010.05.001Search in Google Scholar

[7] Erdem Y. and Çanak İ., A Tauberian theorem for (A)(C,α) summability, Comput. Math. Appl. 60 (2010), no. 11, 2920–2925. 10.1016/j.camwa.2010.09.047Search in Google Scholar

[8] Hardy G. H., Theorems relating to the summability and convergence of slowly oscillating series, Proc. Lond. Math. Soc. (2) 8 (1910), 301–320. 10.1112/plms/s2-8.1.301Search in Google Scholar

[9] Hardy G. H. and Littlewood J. E., Tauberian theorems concerning power and Dirichlet’s series whose coefficients are positive, Proc. Lond. Math. Soc. (2) 13 (1914), 174–191. 10.1112/plms/s2-13.1.174Search in Google Scholar

[10] Kogbetliantz E., Sur les séries absolument sommables par la méthode des moyennes arihtmétiques, Bulletin Sci. Math. (2) 49 (1925), 234–251. Search in Google Scholar

[11] Kogbetliantz E., Sommation des séries et intégrals divergents par les moyennes arithmétiques et typiques, Memorial Sci. Math. 51 (1931), 1–84. Search in Google Scholar

[12] Littlewood J. E., The converse of Abel’s theorem on power series, Proc. Lond. Math. Soc. (2) 9 (1911), 434–448. 10.1112/plms/s2-9.1.434Search in Google Scholar

[13] Lord R. D., On some relations between the Abel, Borel and Cesàro methods of summations, Proc. Lond. Math. Soc. (2) 38 (1935), no. 2, 241–246. 10.1112/plms/s2-38.1.241Search in Google Scholar

[14] Pati T., On Tauberian theorems, Sequences, Summability and Fourier Analysis, Narosa Publishing House, New Delhi (2005), 84–96. Search in Google Scholar

[15] Szàsz O., Generalization of two theorems of Hardy and Littlewood on power series, Duke Math. J. 1 (1935), no. 1, 105–111. 10.1215/S0012-7094-35-00111-9Search in Google Scholar

[16] Tauber A., Ein Satz der Theorie der unendlichen Reihen, Monatsh. Math. 8 (1897), 273–277. 10.1007/BF01696278Search in Google Scholar

Received: 2014-5-11
Accepted: 2015-1-30
Published Online: 2016-6-23
Published in Print: 2016-9-1

© 2016 by De Gruyter

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0024/html
Scroll to top button