Startseite Functions of bounded fractional differential variation – A new concept
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functions of bounded fractional differential variation – A new concept

  • Jyotindra C. Prajapati EMAIL logo und Krunal B. Kachhia
Veröffentlicht/Copyright: 21. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The idea of functions of bounded differential variation was introduced by Bhatt, Dabhi and Kachhia in [2]. In the present paper, we introduce functions of bounded fractional differential variation using the Caputo-type fractional derivative instead of the commonly used first-order derivative. Various properties and relation with some known results of classical analysis are also studied. We prove that the space BFDV[a,b] of all functions of bounded fractional differential variation on [a,b] is a normed algebra under certain type of norms.

MSC 2010: 26A33; 26A45; 46J10

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments and suggestions for improving this paper.

References

[1] Area I., Losada J. and Nieto J. J., On fractional derivatives and primitives of periodic functions, Abstr. Appl. Anal. 2014 (2014), Article ID 392598. 10.1155/2014/392598Suche in Google Scholar

[2] Bhatt S. J., Dabhi P. A. and Kachhia K., Absolutely differentiable functions and functions of bounded differential variation, Math. Student 80 (2011), no. 1–4, 237–251. Suche in Google Scholar

[3] Dales H. G., Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser. (N.S.) 24, Clarendon Press, Oxford, 2000. 10.1093/oso/9780198500131.001.0001Suche in Google Scholar

[4] Diethelm K., The Analysis of Fractional Differential Equations. An Application-Oriented Exposition using Differential Operators of Caputo Type, Lecture Notes in Math. 2004, Springer, Berlin, 2010. 10.1007/978-3-642-14574-2Suche in Google Scholar

[5] Diethelm K., The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus, Fract. Calc. Appl. Anal. 15 (2012), no. 2, 304–313. 10.2478/s13540-012-0022-3Suche in Google Scholar

[6] Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Classics Math., Springer, Berlin, 2001. 10.1007/978-3-642-61798-0Suche in Google Scholar

[7] Kilbas A. A., Srivastava H. M. and Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier, Amsterdam, 2006. Suche in Google Scholar

[8] Mittag-Leffler G. M., Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris 137 (1904), 554–558. Suche in Google Scholar

[9] Prajapati J. C., Certain properties of Mittag-Leffler function with argument xα, α>0, Ital. J. Pure Appl. Math. 30 (2013), 411–416. Suche in Google Scholar

[10] Rudin W., Real and Complex Analysis, 3rd ed., McGraw–Hill, New York, 1987. Suche in Google Scholar

[11] Samko S. G., Kilbas A. A. and Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. Suche in Google Scholar

[12] Shukla A. K. and Prajapati J. C., On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007), no. 2, 797–811. 10.1016/j.jmaa.2007.03.018Suche in Google Scholar

[13] Shukla A. K. and Prajapati J. C., On a generalized Mittag-Leffler type function and generated integral operator, Math. Sci. Res. J. 12 (2008), no. 12, 283–290. Suche in Google Scholar

[14] Wiman A., Über den Fundamentalsatz in der Teorie der Funktionen Ea(x), Acta Math. 29 (1905), no. 1, 191–201. 10.1007/BF02403202Suche in Google Scholar

Received: 2014-5-23
Revised: 2014-7-8
Accepted: 2014-9-1
Published Online: 2016-7-21
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0030/html
Button zum nach oben scrollen