Home The spaces of bilinear multipliers of weighted Lorentz type modulation spaces
Article
Licensed
Unlicensed Requires Authentication

The spaces of bilinear multipliers of weighted Lorentz type modulation spaces

  • Ahmet Turan Gürkanlı EMAIL logo , Öznur Kulak and Ayşe Sandıkçı
Published/Copyright: March 3, 2016
Become an author with De Gruyter Brill

Abstract

Fix a nonzero window g𝒮(n), a weight function w on 2n and 1p,q. The weighted Lorentz type modulation space M(p,q,w)(n) consists of all tempered distributions f𝒮(n) such that the short time Fourier transform Vgf is in the weighted Lorentz space L(p,q,wdμ)(2n). The norm on M(p,q,w)(n) is fM(p,q,w)=Vgfpq,w. This space was firstly defined and some of its properties were investigated for the unweighted case by Gürkanlı in [9] and generalized to the weighted case by Sandıkçı and Gürkanlı in [16]. Let 1<p1,p2<, 1q1,q2<, 1p3,q3, ω1,ω2 be polynomial weights and ω3 be a weight function on 2n. In the present paper, we define the bilinear multiplier operator from M(p1,q1,ω1)(n)×M(p2,q2,ω2)(n) to M(p3,q3,ω3)(n) in the following way. Assume that m(ξ,η) is a bounded function on 2n, and define

Bm(f,g)(x)=nnf^(ξ)g^(η)m(ξ,η)e2πiξ+η,x𝑑ξ𝑑ηfor all f,g𝒮(n).

The function m is said to be a bilinear multiplier on n of type (p1,q1,ω1;p2,q2,ω2;p3,q3,ω3) if Bm is the bounded bilinear operator from M(p1,q1,ω1)(n)×M(p2,q2,ω2)(n) to M(p3,q3,ω3)(n). We denote by BM(p1,q1,ω1;p2,q2,ω2)(n) the space of all bilinear multipliers of type (p1,q1,ω1;p2,q2,ω2;p3,q3,ω3), and define m(p1,q1,ω1;p2,q2,ω2;p3,q3,ω3)=Bm. We discuss the necessary and sufficient conditions for Bm to be bounded. We investigate the properties of this space and we give some examples.

MSC 2010: 42B15; 42B35

References

[1] Blasco O., Notes on the spaces of bilinear multipliers, Rev. Un. Mat. Argentina 50 (2009), no. 2, 23–37. Search in Google Scholar

[2] Chung H.-M., Hunt R. A. and Kurtz D. S., The Hardy–Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), no. 1, 109–120. 10.1512/iumj.1982.31.31012Search in Google Scholar

[3] Coifman R. R. and Meyer Y., Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves, Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, Berlin (1980), 104–122. 10.1007/BFb0087669Search in Google Scholar

[4] Duyar C. and Gürkanlı A. T., Multipliers and relative completion in weighted Lorentz spaces, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), no. 4, 467–476. 10.1016/S0252-9602(17)30490-3Search in Google Scholar

[5] Feichtinger H. G., Modulation spaces on locally compact Abelian groups, technical report, University of Vienna, 1983. Search in Google Scholar

[6] Gilbert J. E. and Nahmot A. R., Boundedness of bilinear operators with nonsmooth symbols, Math. Res. Lett. 7 (2000), no. 5–6, 767–778. 10.4310/MRL.2000.v7.n6.a9Search in Google Scholar

[7] Gilbert J. E. and Nahmot A. R., Bilinear operators with non-smooth symbol. I, J. Fourier Anal. Appl. 7 (2001), no. 5, 435–467. 10.1007/BF02511220Search in Google Scholar

[8] Gröchenig K., Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0003-1Search in Google Scholar

[9] Gürkanlı A. T., Time frequency analysis and multipliers of the spaces M(p,q)(𝐑d) and S(p,q)(𝐑d), J. Math. Kyoto Univ. 46 (2006), no. 3, 595–616. 10.1215/kjm/1250281751Search in Google Scholar

[10] Hunt R. A. and Kurtz D. S., The Hardy–Littlewood maximal function on L(p,1), Indiana Univ. Math. J. 32 (1983), no. 1, 155–158. 10.1512/iumj.1983.32.32012Search in Google Scholar

[11] Kulak Ö. and Gürkanlı A. T., Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, J. Inequal. Appl. 2013 (2013), Article ID 259. 10.1186/1029-242X-2013-259Search in Google Scholar

[12] Lacey M. T., On the bilinear Hilbert transform, Doc. Math. 2 (1998), 647–656. 10.4171/dms/1-2/62Search in Google Scholar

[13] Lacey M. and Thiele C., Lp estimates on the bilinear Hilbert transform for 2<p<, Ann. of Math. (2) 146 (1997), no. 3, 693–724. 10.2307/2952458Search in Google Scholar

[14] O’Neil R., Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129–142. 10.1215/S0012-7094-63-03015-1Search in Google Scholar

[15] Sandıkçı A., Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish J. Math. 38 (2014), no. 4, 728–745. 10.3906/mat-1311-43Search in Google Scholar

[16] Sandıkçı A. and Gürkanlı A. T., Gabor analysis of the spaces M(p,q,w)(d) and S(p,q,r,w,ω)(d), Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 1, 141–158. 10.1016/S0252-9602(11)60216-6Search in Google Scholar

Received: 2014-8-11
Accepted: 2015-1-9
Published Online: 2016-3-3
Published in Print: 2016-9-1

© 2016 by De Gruyter

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0003/html
Scroll to top button