Startseite Modified relativistic Laguerre polynomials. Monomiality and Lie algebraic methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modified relativistic Laguerre polynomials. Monomiality and Lie algebraic methods

  • Subuhi Khan und Rehana Khan EMAIL logo
Veröffentlicht/Copyright: 18. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we combine the Lie algebraic methods and the monomiality principle techniques to obtain new results concerning generalized Laguerre polynomials. Also, we derive generating relations involving modified relativistic Laguerre polynomials into the context of the representation D(u,m0) of a three-dimensional Lie algebra sl(2).

MSC 2010: 33C45; 33C50; 33C80

References

[1] Aldaya V., Bisquet J. and Navarro-Salas J., The quantum relativistic harmonic oscillator: Generalized Hermite polynomials, Phys. Lett. A 156 (1991), no. 7–8, 381–385. 10.1016/0375-9601(91)90711-GSuche in Google Scholar

[2] Andrews L. C., Special Functions for Engineers and Applied Mathematicians, Macmillan, New York, 1985. Suche in Google Scholar

[3] Bretti G., Cesarano C. and Ricci P. E., Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl. 48 (2004), no. 5–6, 833–839. 10.1016/j.camwa.2003.09.031Suche in Google Scholar

[4] Dattoli G., Generalized polynomials, operational identities and their applications. Higher transcendental functions and their applications, J. Comput. Appl. Math. 118 (2000), no. 1–2, 111–123. 10.1016/S0377-0427(00)00283-1Suche in Google Scholar

[5] Dattoli G., Hermite–Bessel and Laguerre–Bessel functions: A by-product of the monomiality principle, Advanced Special Functions and Applications (Melfi 1999), Proc. Melfi Sch. Adv. Top. Math. Phys. 1, Aracne, Rome (2000), 147–164. Suche in Google Scholar

[6] Dattoli G., Cesarano C. and Sacchetti D., Miscellaneous results on the generating functions of special functions, Integral Transforms Spec. Funct. 12 (2001), no. 4, 315–322. 10.1080/10652460108819354Suche in Google Scholar

[7] Dattoli G., Lorenzutta S., Maino G. and Torre A., The generating function method and properties of relativistic Hermite polynomials, Nuovo Cimento Soc. Ital. Fis. B (12) 113 (1998), no. 5, 553–560. Suche in Google Scholar

[8] Dattoli G., Lorenzutta S., Mancho A. M. and Torre A., Generalized polynomials and associated operational identities, J. Comput. Appl. Math. 108 (1999), no. 1–2, 209–218. 10.1016/S0377-0427(99)00111-9Suche in Google Scholar

[9] Dattoli G., Srivastava H. M. and Khan S., Operational versus Lie-algebraic methods and the theory of multi-variable Hermite polynomials, Integral Transforms Spec. Funct. 16 (2005), no. 1, 81–91. 10.1080/10652460412331270616Suche in Google Scholar

[10] Dattoli G. and Torre A., Operatorial methods and two variable Laguerre polynomials, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 132 (1998), 3–9. Suche in Google Scholar

[11] Dattoli G. and Torre A., Exponential operators, quasi-monomials and generalized polynomials, Radiation Phys. Chem. 57 (2000), no. 1, 22–26. 10.1016/S0969-806X(99)00346-1Suche in Google Scholar

[12] Dattoli G., Torre A. and Mazzacurati G., Monomiality and integrals involving Laguerre polynomials, Rend. Mat. Appl. (7) 18 (1998), no. 3, 565–574. Suche in Google Scholar

[13] Miller, Jr. W., Lie Theory and Special Functions, Mathematics in Science and Engineering 43, Academic Press, New York, 1968. Suche in Google Scholar

[14] Nagel B., The relativistic Hermite polynomial is a Gegenbauer polynomial, J. Math. Phys. 35 (1994), no. 4, 1549–1554. 10.1063/1.530606Suche in Google Scholar

[15] Ricci P. E. and Tavkhelidze I., An introduction to operational techniques and special polynomials. Differential equations and their applications, J. Math. Sci. (N. Y.) 157 (2009), no. 1, 161–189. 10.1007/s10958-009-9305-6Suche in Google Scholar

[16] Srivastava H. M. and Manocha H. L., A Treatise on Generating Functions, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1984. Suche in Google Scholar

Received: 2014-7-3
Revised: 2015-1-12
Accepted: 2015-2-9
Published Online: 2016-5-18
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0022/pdf
Button zum nach oben scrollen