Startseite Bicritical domination and double coalescence of graphs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bicritical domination and double coalescence of graphs

  • Marcin Krzywkowski EMAIL logo und Doost Ali Mojdeh
Veröffentlicht/Copyright: 1. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A graph is bicritical if the removal of any pair of vertices decreases the domination number. We study the properties of bicritical graphs and their relation with critical graphs, and we obtain results for bicritical graphs with edge connectivity two or three. We also generalize the notion of the coalescence of two graphs and investigate the bicriticality of such graphs.

MSC 2010: 05C69

Funding statement: The research of the first author was partially supported by the Claude Leon Foundation, South Africa, and by the Polish National Science Centre grant 2011/02/A/ST6/00201.

References

[1] Brigham R. C., Haynes T. W., Henning M. A. and Rall D. F., Bicritical domination, Discrete Math. 305 (2005), no. 1–3, 18–32. 10.1016/j.disc.2005.09.013Suche in Google Scholar

[2] Favaron O., Summer D. P. and Wojcicka E., The diameter of domination k-critical graphs, J. Graph Theory 18 (1994), no. 7, 723–734. 10.1002/jgt.3190180708Suche in Google Scholar

[3] Grobler P. J. P. and Roux A., Coalescence and criticality of graphs, Discrete Math. 313 (2013), no. 10, 1087–1097. 10.1016/j.disc.2013.01.027Suche in Google Scholar

[4] Haynes T. W., Hedetniemi S. T. and Slater P. J., Fundamentals of Domination in Graphs, Pure Appl. Math. 208, Dekker, New York, 1998. Suche in Google Scholar

[5] Mojdeh D. A. and Firoozi P., Characteristics of (γ,3)-critical graphs, Appl. Anal. Discrete Math. 4 (2010), no. 1, 197–206. 10.2298/AADM100206013MSuche in Google Scholar

[6] Phillips J. B., Haynes T. W. and Slater P. J., A generalization of domination critical graphs, Util. Math. 58 (2000), 129–144. Suche in Google Scholar

[7] Sumner D. P., Critical concepts in domination, Discrete Math. 86 (1990), no. 1–3, 33–46. 10.1016/S0167-5060(08)71036-7Suche in Google Scholar

[8] Sumner D. P. and Wojcicka E., Graphs critical with respect to the domination number, Domination in Graphs, Pure Appl. Math. 209, Dekker, New York (1998), 439–469. Suche in Google Scholar

[9] West D. B., Introduction to Graph Theory, 2nd ed., Prentice-Hall of India, New Delhi, 2005. Suche in Google Scholar

Received: 2014-2-22
Revised: 2015-12-10
Accepted: 2015-12-18
Published Online: 2016-6-1
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0019/pdf
Button zum nach oben scrollen