Startseite Sensitivity analysis of the optimal exercise boundary of the American put option
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sensitivity analysis of the optimal exercise boundary of the American put option

  • Nasir Rehman EMAIL logo , Sultan Hussain und Wasim Ul-Haq
Veröffentlicht/Copyright: 13. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the American put problem in a general one-dimensional diffusion model. The risk-free interest rate is constant, and volatility is assumed to be a function of time and stock price. We use the well-known parabolic obstacle problem and establish the continuity estimate of the optional exercise boundaries of the American put option with respect to the local volatilities, which may be considered as a generalization of the Achdou results [1].

MSC 2010: 60G40; 60G48; 91B28

Funding statement: The authors wish to gratefully acknowledge the financial support from their corresponding universities.

Acknowledgements

The authors wish to gratefully acknowledge the constructive comments of the anonymous referees which helped us a lot in improving the paper.

References

[1] Achdou Y., An inverse problem for a parabolic variational inequality arising in volatility calibration with American options, SIAM J. Control Optim. 43 (2005), no. 5, 1583–1615. 10.1137/S0363012903424423Suche in Google Scholar

[2] Anderson S., A simple approach to the pricing of Bermudan swaptions in the multifactor LIBOR market model, J. Comput. Finance 3 (2000), 5–32. 10.21314/JCF.1999.041Suche in Google Scholar

[3] Ekström E., Properties of American option prices, Stochastic Process. Appl. 114 (2004), no. 2, 265–278. 10.1016/j.spa.2004.05.002Suche in Google Scholar

[4] El-Karoui N., Jeanblance-Picqué M. and Shreve S. E., Robustness of the Black and Scholes formula, Math. Finance 8 (1998), no. 2, 93–126. 10.1111/1467-9965.00047Suche in Google Scholar

[5] Hobson D. G., Volatility misspecification, option pricing and superreplication via coupling, Ann. Appl. Probab. 8 (1998), no. 1, 193–205. 10.1214/aoap/1027961040Suche in Google Scholar

[6] Jacka S., Optimal stopping and the American put, Math. Finance 1 (1991), no. 2, 1–14. 10.1111/j.1467-9965.1991.tb00007.xSuche in Google Scholar

[7] Karatzas I. and Shreve S. E., Methods of Mathematical Finance, Appl. Math. 39, Springer, Berlin, 1998. 10.1007/b98840Suche in Google Scholar

[8] Kim I. J., The analytic valuation of the American options, Rev. Fin. Stud. 3 (1990), no. 4, 547–572. 10.1093/rfs/3.4.547Suche in Google Scholar

[9] Lamberton D. and Villeneuve S., Critical price near maturity for an American option on a dividend-paying stock, Ann. Appl. Probab. 13 (2003), no. 2, 800–815. 10.1214/aoap/1050689604Suche in Google Scholar

[10] Pham H., Optimal stopping, free boundary, and American option in a jump-diffusion model, Appl. Math. Optim. 35 (1997), no. 2, 145–164. 10.1007/s002459900042Suche in Google Scholar

[11] Rehman N. and Shashiashvili M., The American foreign exchange option in time-dependent one-dimensional diffusion model for exchange rate, Appl. Math. Optim. 59 (2009), no. 3, 329–363. 10.1007/s00245-008-9056-7Suche in Google Scholar

[12] Shreve S. E., Stochastic Calculus for Finance. II: Continuous-Time Models, Springer Finance, Springer, New York, 2004. 10.1007/978-1-4757-4296-1Suche in Google Scholar

[13] Villeneuve S., Exercise regions of American options on several assets, Finance Stoch. 3 (1999), no. 3, 295–322. 10.1007/s007800050064Suche in Google Scholar

[14] Wilmott P., Dewynne J. and Howison S., Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993. Suche in Google Scholar

Received: 2014-7-12
Revised: 2015-2-14
Accepted: 2015-9-17
Published Online: 2016-4-13
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 1.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0017/pdf
Button zum nach oben scrollen