Startseite Technik Frequency and pattern reconfigurable patch antenna for multi-standard wireless applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Frequency and pattern reconfigurable patch antenna for multi-standard wireless applications

  • Bhaben Saikia und Kunal Borah EMAIL logo
Veröffentlicht/Copyright: 2. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 79 Heft 7-8

Abstract

This paper presents the design of a rectangular patch antenna with compound reconfigurability in terms of operating frequency and radiation pattern using only four PIN diodes. Two PIN diodes namely, PD1 and PD2, are implanted on a rectangular slot of the driven patch for frequency reconfiguration. While other two PIN diodes PD3 and PD4, are uniquely arranged with shorting posts between parasitic elements and ground, perform the pattern reconfiguration operation. Switching of PD1 and PD2 changes the effective electrical length of driven patch for four different measured resonant frequencies at 3.35, 4.02, 4.12 and 5.12 GHz. Moreover, ON/OFF states of PD3 and PD4 alter the function of parasitic elements between director and reflector to achieve H-plane pattern reconfiguration in all reconfigurable operating frequencies. Measured tilt angles at 3.35, 4.02, 4.12 and 5.12 GHz bands are (−40°, 0°) (+30°, −42°, 0°) (+40°, −40°, 0°) and (+36°, −43°) respectively. Measured results of reflection coefficient and radiation pattern are in good agreement with the simulated results, which validates the frequency and pattern reconfigurable performances of the antenna. The proposed antenna can be used for various C band wireless applications such as sub-6-GHz 5G (3.3 GHz, 4 GHz), and WLAN (5.2 GHz).


Corresponding author: Kunal Borah, Department of Physics, NERIST, Nirjuli 791109, Arunachal Pradesh, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] S. Koley, L. Murmu, and B. Pal, “A pattern reconfigurable antenna for WLAN and WiMAX systems,” Prog. Electromagn. Res. C., vol. 66, pp. 183–190, 2016, https://doi.org/10.2528/pierc16052306.Suche in Google Scholar

[2] P. Y. Qin, Y. Guo, Y. Cai, E. Dutkiewicz, and C. H. Liang, “A reconfigurable antenna with frequency and polarization agility,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 1373–1376, 2011.10.1109/LAWP.2011.2178226Suche in Google Scholar

[3] S. Ullah, et al., “Frequency reconfigurable antenna for portable wireless applications,” Comput. Mater. Contin., vol. 68, pp. 3015–3027, 2021, https://doi.org/10.32604/cmc.2021.015549.Suche in Google Scholar

[4] K. M. Shereen, I. M. Khattak, and G. Witjaksono, “A brief review of frequency, radiation pattern, polarization, and compound reconfigurable antennas for 5G applications,” J. Comput. Electron., vol. 18, pp. 1065–1102, 2019, https://doi.org/10.1007/s10825-019-01336-0.Suche in Google Scholar

[5] C. Y. Chiu, J. Li, S Song, and R. D. Murch, “Frequency-reconfigurable pixel slot antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4921–4924, 2012, https://doi.org/10.1109/tap.2012.2207334.Suche in Google Scholar

[6] Z. Deng, J. Gan, H. Wei, H. Gong, and X. Guo, “Ka-band radiation pattern reconfigurable antenna based on microstrip MEMS switches,” Prog. Electromagn. Res. Lett., vol. 59, pp. 93–99, 2016, https://doi.org/10.2528/pierl16011201.Suche in Google Scholar

[7] B. Saikia, P. Dutta, and K. Borah, “A compact dual asymmetric L-slot frequency reconfigurable microstrip patch antenna,” Prog. Electromagn. Res. C., vol. 113, pp. 59–68, 2021, https://doi.org/10.2528/pierc21041001.Suche in Google Scholar

[8] A. Boukarkar, X. Q. Lin, J. W. Yu, P. Mei, Y. Jiang, and Y. Q. Yu, “A highly integrated independently tunable triple-band patch antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 16, pp. 2216–2219, 2017, https://doi.org/10.1109/lawp.2017.2707095.Suche in Google Scholar

[9] S. A. Hamzah, M. Esa, N. N. N. A. Malik, and M. K. H. Ismail, “Reconfigurable harmonic suppressed fractal dipole antenna,” Proc. Asia-Pacific Microw. Conf., pp. 800–805, 2012, https://doi.org/10.1109/apmc.2012.6421740.Suche in Google Scholar

[10] S. A. Shah, M. F. Khan, S. Ullah, and J. A. Flint, “Design of a multi-band frequency reconfigurable planar monopole antenna using truncated ground plane for Wi-Fi, WLAN and WiMAX applications,” in IEEE proceedings of International Conference on Open-Source Systems & Technologies 2014 (Dec), Lahore, Pakistan, vol. 18, pp. 151–155.10.1109/ICOSST.2014.7029336Suche in Google Scholar

[11] H. T. Chattha, M. Hanif, X. Yang, Q. H. Abbasi, and I. E. Rana, “Frequency reconfigurable patch antenna for 4G LTE applications,” Prog. Electromagn. Res. M, vol. 69, pp. 1–13, 2018, https://doi.org/10.2528/pierm18022101.Suche in Google Scholar

[12] S Ullah, et al., “Frequency reconfigurable antenna for portable wireless applications,” Cmc-Computer Mater. Continua., vol. 68, no. 3, pp. 3015–3027, 2021, https://doi.org/10.32604/cmc.2021.015549.Suche in Google Scholar

[13] Y. Qi and Y. H. Xu, “A novel design of frequency reconfigurable antenna for 5G mobile terminal equipment,” Int. J. Comp. Commun. Eng., vol. 9, no. 3, pp. 134–140, 2020, https://doi.org/10.17706/ijcce.2020.9.3.134-140.Suche in Google Scholar

[14] S. Sharma and C. C. Tripathi, “Frequency reconfigurable U-slot antenna for SDR application,” Prog. Electromagn. Res., vol. 55, pp. 129–136, 2015, https://doi.org/10.2528/pierl15071304.Suche in Google Scholar

[15] A. F. Sheta and S. F. Mahmoud, “A widely tunable compact patch antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 7, pp. 40–42, 2008, https://doi.org/10.1109/lawp.2008.915796.Suche in Google Scholar

[16] Yilmaz, K. and Nesimoglu, T., “Design of a multi-layer beam-steering WLAN antenna,” in 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, IEEE, 2018, pp. 26–31.10.1109/MMS.2018.8612059Suche in Google Scholar

[17] Shoaib, N., Ilyas, S., Raza, A., and Hassan, T., “Beam steering using active superstrate antenna for WLAN applications,” in IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, IEEE, 2019, pp. 2029–2030.10.1109/APUSNCURSINRSM.2019.8888802Suche in Google Scholar

[18] T. Sabapathy, M. F. B. Jamlos, R. B. Ahmad, M. Jusoh, M. I. Jais, and M. R. Kamarudin, “Electronically reconfigurable beam steering antenna using embedded RF PIN based parasitic arrays (ERPPA),” Prog. Electromagn. Res., vol. 140, pp. 241–261, 2013, https://doi.org/10.2528/pier13042906.Suche in Google Scholar

[19] Z. Deng, J. Gan, H. Wei, H. Gong, and X. Guo, “Ka-band radiation pattern reconfigurable antenna based on microstrip MEMS switches,” Prog. Electromagn. Res., vol. 59, pp. 93–99, 2016, https://doi.org/10.2528/pierl16011201.Suche in Google Scholar

[20] I. Ahmad, et al., “A pentaband compound reconfigurable antenna for 5G and multi-standard sub-6GHz wireless applications,” Electronics, vol. 10, p. 2526, 2021, https://doi.org/10.3390/electronics10202526.Suche in Google Scholar

[21] A. Iqbal, et al., “Frequency and pattern reconfigurable antenna for emerging wireless communication systems,” Electronics, vol. 8, no. 4, p. 407, 2019, https://doi.org/10.3390/electronics8040407.Suche in Google Scholar

[22] G. Singh, B. K. Kanaujia, V. K. Pandey, D. Gangwar, and S. Kumar, “Pattern and frequency reconfigurable antenna with diode loaded ELC resonator,” Int. J. Microw. Wirel. Technol., vol. 12, no. 2, pp. 163–175, 2020, https://doi.org/10.1017/S1759078719001077.Suche in Google Scholar

[23] M. S. Khan, A. Iftikhar, A. D. Capobianco, R. M. Shubair, and B. Ijaz, “Pattern and frequency reconfiguration of patch antenna using PIN diodes,” Microw. Opt. Technol. Lett., vol. 59, pp. 2180–2185, 2017. https://doi.org/10.1002/mop.30709.Suche in Google Scholar

[24] Z. Zhu, P. Wang, S. You, and P. Gao, “A flexible frequency and pattern reconfigurable antenna for wireless systems,” Prog. Electromagn. Res., vol. 76, pp. 63–70, 2018, https://doi.org/10.2528/pierl18040401.Suche in Google Scholar

[25] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed., New Delhi, India, John Wiley & Sons, 2015.Suche in Google Scholar

[26] J. Huang and A. C. Densmore, “Microstrip yagi array antenna for mobile satellite vehicle application,” IEEE Trans. Ant. Propag., vol. 39, no. 7, pp. 1024–1030, 1991, https://doi.org/10.1109/8.86924.Suche in Google Scholar

Received: 2024-09-17
Accepted: 2025-05-19
Published Online: 2025-06-02
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2024-0293/html?lang=de
Button zum nach oben scrollen