Startseite Mathematik A trace formula for Hecke operators on Fuchsian groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A trace formula for Hecke operators on Fuchsian groups

  • Alexandru A. Popa EMAIL logo
Veröffentlicht/Copyright: 10. Februar 2025

Abstract

In this paper we give a trace formula for Hecke operators acting on the cohomology of a Fuchsian group of finite covolume Γ with coefficients in a module V. The proof is based on constructing an operator whose trace on V equals the Lefschetz number of the Hecke correspondence on cohomology, generalizing the operator introduced together with Don Zagier for the modular group.

MSC 2020: 11F11; 11F25; 11F75

Communicated by Jan Bruinier


Funding statement: The author was partially supported by the CNCS-UEFISCDI grant PN-III-P4-ID-PCE-2020-2498.

Acknowledgements

I would like to thank Vicenţiu Paşol for helpful discussions while preparing this paper. I would also like the referee for helpful comments improving the exposition.

References

[1] J. Arthur, The L 2 -Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257–290. 10.1007/BF01389042Suche in Google Scholar

[2] H. Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155–196. 10.1007/BF01390137Suche in Google Scholar

[3] K. S. Brown, Complete Euler characteristics and fixed-point theory, J. Pure Appl. Algebra 24 (1982), no. 2, 103–121. 10.1016/0022-4049(82)90008-1Suche in Google Scholar

[4] Y. Choie and D. Zagier, Rational period functions for PSL ( 2 , 𝐙 ) , A tribute to Emil Grosswald: Number theory and related analysis, Contemp. Math. 143, American Mathematical Society, Providence (1993), 89–108. 10.1090/conm/143/00992Suche in Google Scholar

[5] R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. 10.2307/1969736Suche in Google Scholar

[6] J. Franke, Harmonic analysis in weighted L 2 -spaces, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), no. 2, 181–279. 10.1016/S0012-9593(98)80015-3Suche in Google Scholar

[7] M. Goresky and R. MacPherson, Lefschetz numbers of Hecke correspondences, The Zeta Functions of Picard Modular Surfaces, Université de Montréal, Montreal (1992), 465–478. Suche in Google Scholar

[8] M. Goresky and R. MacPherson, The topological trace formula, J. Reine Angew. Math. 560 (2003), 77–150. 10.1515/crll.2003.062Suche in Google Scholar

[9] G. Harder, Cohomology of arithmetic groups, (2017), https://www.math.uni-bonn.de/people/harder/Manuscripts/buch/Volume-III.pdf. Suche in Google Scholar

[10] R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650–665. 10.2307/1969440Suche in Google Scholar

[11] J. Oesterlé, Sur la trace des opérateurs de Hecke, Thèse de troisième cycle, Université Paris-Sud, Orsay, 1977. Suche in Google Scholar

[12] R. Pollack and G. Stevens, Critical slope p-adic L-functions, J. Lond. Math. Soc. (2) 87 (2013), no. 2, 428–452. 10.1112/jlms/jds057Suche in Google Scholar

[13] A. A. Popa, On the trace formula for Hecke operators on congruence subgroups, Proc. Amer. Math. Soc. 146 (2018), no. 7, 2749–2764. 10.1090/proc/13896Suche in Google Scholar

[14] A. A. Popa, On the trace formula for Hecke operators on congruence subgroups, II, Res. Math. Sci. 5 (2018), no. 1, Paper No. 3. 10.1007/s40687-018-0125-5Suche in Google Scholar

[15] A. A. Popa and D. Zagier, An elementary proof of the Eichler–Selberg trace formula, J. Reine Angew. Math. 762 (2020), 105–122. 10.1515/crelle-2018-0035Suche in Google Scholar

[16] J.-P. Serre, Cohomologie des groupes discrets, Prospects in Mathematics, Ann. of Math. Stud. 70, Princeton University, Princeton (1971), 77–169. 10.1515/9781400881697-005Suche in Google Scholar

[17] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten, Tokyo, 1971. Suche in Google Scholar

[18] R. G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. 10.1016/0021-8693(69)90030-1Suche in Google Scholar

Received: 2024-01-07
Revised: 2024-11-04
Published Online: 2025-02-10
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0018/pdf
Button zum nach oben scrollen