Startseite Existence and multiplicity of solutions for fractional Schrödinger-p-Kirchhoff equations in ℝ N
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence and multiplicity of solutions for fractional Schrödinger-p-Kirchhoff equations in ℝ N

  • Huo Tao ORCID logo , Lin Li ORCID logo EMAIL logo und Patrick Winkert ORCID logo
Veröffentlicht/Copyright: 26. März 2024

Abstract

This paper concerns the existence and multiplicity of solutions for a nonlinear Schrödinger–Kirchhoff-type equation involving the fractional p-Laplace operator in N . Precisely, we study the Kirchhoff-type problem

( a + b 2 N | u ( x ) - u ( y ) | p | x - y | N + s p d x d y ) ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) in  N ,

where a , b > 0 , ( - Δ ) p s is the fractional p-Laplacian with 0 < s < 1 < p < N s , V : N and f : N × are continuous functions while V can have negative values and f fulfills suitable growth assumptions. According to the interaction between the attenuation of the potential at infinity and the behavior of the nonlinear term at the origin, using a penalization argument along with L -estimates and variational methods, we prove the existence of a positive solution. In addition, we also establish the existence of infinitely many solutions provided the nonlinear term is odd.


Communicated by Christopher D. Sogge


Award Identifier / Grant number: 12361024

Funding statement: This work is supported by Research Fund of National Natural Science Foundation of China (No. 12361024), the Team Building Project for Graduate Tutors in Chongqing (No. yds223010) and Innovative Project of Chongqing Technology and Business University (No. CYS23567).

References

[1] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), no. 1, 85–93. 10.1016/j.camwa.2005.01.008Suche in Google Scholar

[2] C. O. Alves, G. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Adv. Nonlinear Anal. 5 (2016), no. 4, 331–345. 10.1515/anona-2015-0123Suche in Google Scholar

[3] C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in N via penalization method, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Paper No. 47. 10.1007/s00526-016-0983-xSuche in Google Scholar

[4] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of elliptic equations in N with vanishing potentials, J. Differential Equations 252 (2012), no. 10, 5555–5568. 10.1016/j.jde.2012.01.025Suche in Google Scholar

[5] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 117–144. 10.4171/jems/24Suche in Google Scholar

[6] A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math. 98 (2006), 317–348. 10.1007/BF02790279Suche in Google Scholar

[7] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381. 10.1016/0022-1236(73)90051-7Suche in Google Scholar

[8] A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations 18 (2005), no. 12, 1321–1332. 10.57262/die/1356059712Suche in Google Scholar

[9] V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2043–2062. 10.1007/s10231-017-0652-5Suche in Google Scholar

[10] V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in N , Rev. Mat. Iberoam. 35 (2019), no. 5, 1367–1414. 10.4171/rmi/1086Suche in Google Scholar

[11] V. Ambrosio, Nonlinear fractional Schrödinger equations in N , Front Elliptic Parabolic Probl., Birkhäuser/Springer, Cham, 2021. Suche in Google Scholar

[12] V. Ambrosio, A Kirchhoff type equation in N involving the fractional ( p , q ) -Laplacian, J. Geom. Anal. 32 (2022), no. 4, Paper No. 135. 10.1007/s12220-022-00876-5Suche in Google Scholar

[13] V. Ambrosio and T. Isernia, A multiplicity result for a ( p , q ) -Schrödinger–Kirchhoff type equation, Ann. Mat. Pura Appl. (4) 201 (2022), no. 2, 943–984. 10.1007/s10231-021-01145-ySuche in Google Scholar

[14] V. Ambrosio, T. Isernia and V. D. Radulescu, Concentration of positive solutions for a class of fractional p-Kirchhoff type equations, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 2, 601–651. 10.1017/prm.2020.32Suche in Google Scholar

[15] V. Ambrosio and R. Servadei, Supercritical fractional Kirchhoff type problems, Fract. Calc. Appl. Anal. 22 (2019), no. 5, 1351–1377. 10.1515/fca-2019-0071Suche in Google Scholar

[16] D. Applebaum, Lévy processes—from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), no. 11, 1336–1347. Suche in Google Scholar

[17] R. Arora, A. Fiscella, T. Mukherjee and P. Winkert, Existence of ground state solutions for a Choquard double phase problem, Nonlinear Anal. Real World Appl. 73 (2023), Article ID 103914. 10.1016/j.nonrwa.2023.103914Suche in Google Scholar

[18] R. Arora, A. Fiscella, T. Mukherjee and P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal. 12 (2023), no. 1, Article ID 20220312. 10.1515/anona-2022-0312Suche in Google Scholar

[19] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330. 10.1090/S0002-9947-96-01532-2Suche in Google Scholar

[20] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital. 20, Unione Matematica Italiana, Bologna, 2016. 10.1007/978-3-319-28739-3Suche in Google Scholar

[21] M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 2099–2129. 10.1007/s10231-016-0555-xSuche in Google Scholar

[22] S.-J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on 𝐑 N , Nonlinear Anal. Real World Appl. 14 (2013), no. 3, 1477–1486. 10.1016/j.nonrwa.2012.10.010Suche in Google Scholar

[23] P. D’Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), no. 2, 247–262. 10.1007/BF02100605Suche in Google Scholar

[24] E. A. de B. Silva and S. H. M. Soares, Semilinear elliptic problems in N : The interplay between the potential and the nonlinear term, preprint (2022), https://arxiv.org/abs/2212.13300. Suche in Google Scholar

[25] L. M. Del Pezzo and A. Quaas, Spectrum of the fractional p-Laplacian in N and decay estimate for positive solutions of a Schrödinger equation, Nonlinear Anal. 193 (2020), Article ID 111479. Suche in Google Scholar

[26] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. 10.1016/j.bulsci.2011.12.004Suche in Google Scholar

[27] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3) 19, Springer, Berlin, 1990. 10.1007/978-3-642-74331-3Suche in Google Scholar

[28] G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick–Schnirelmann category and Morse theory for a fractional Schrödinger equation in N , NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Article ID 12. 10.1007/s00030-016-0355-4Suche in Google Scholar

[29] A. Fiscella and P. Pucci, Kirchhoff–Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud. 17 (2017), no. 3, 429–456. 10.1515/ans-2017-6021Suche in Google Scholar

[30] A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl. 35 (2017), 350–378. 10.1016/j.nonrwa.2016.11.004Suche in Google Scholar

[31] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in 3 , J. Differential Equations 252 (2012), no. 2, 1813–1834. 10.1016/j.jde.2011.08.035Suche in Google Scholar

[32] G. R. Kirchhoff, Vorlesungen über Mathematische Physik, Band 1: Mechanik, Teubner, Leipzig, 1876. Suche in Google Scholar

[33] L. Li, J. Sun and S. Tersian, Infinitely many sign-changing solutions for the Brézis–Nirenberg problem involving the fractional Laplacian, Fract. Calc. Appl. Anal. 20 (2017), no. 5, 1146–1164. 10.1515/fca-2017-0061Suche in Google Scholar

[34] S. Liang, G. Molica Bisci and B. Zhang, Multiple solutions for a noncooperative Kirchhoff-type system involving the fractional p-Laplacian and critical exponents, Math. Nachr. 291 (2018), no. 10, 1533–1546. 10.1002/mana.201700053Suche in Google Scholar

[35] S. Liang and V. D. Rădulescu, Existence of infinitely many solutions for degenerate Kirchhoff-type Schrödinger–Choquard equations, Electron. J. Differential Equations 2017 (2017), Paper No. 230. Suche in Google Scholar

[36] J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud. 30, North-Holland, Amsterdam (1978), 284–346. 10.1016/S0304-0208(08)70870-3Suche in Google Scholar

[37] H. Lv and S. Zheng, Existence and multiplicity for fractional p-Kirchhoff problem with competitive nonlinearities and critical growth, Anal. Math. Phys. 12 (2022), no. 4, Paper No. 96. 10.1007/s13324-022-00706-5Suche in Google Scholar

[38] H. Lv and S. Zheng, Ground states for Schrödinger–Kirchhoff equations of fractional p-Laplacian involving logarithmic and critical nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 111 (2022), Article ID 106438. 10.1016/j.cnsns.2022.106438Suche in Google Scholar

[39] X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity 29 (2016), no. 2, 357–374. 10.1088/0951-7715/29/2/357Suche in Google Scholar

[40] N. Nyamoradi and L. I. Zaidan, Existence and multiplicity of solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations, Complex Var. Elliptic Equ. 63 (2018), no. 3, 346–359. 10.1080/17476933.2017.1310851Suche in Google Scholar

[41] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1, 246–255. 10.1016/j.jde.2005.03.006Suche in Google Scholar

[42] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in N , Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2785–2806. 10.1007/s00526-015-0883-5Suche in Google Scholar

[43] P. Pucci, M. Xiang and B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), no. 1, 27–55. 10.1515/anona-2015-0102Suche in Google Scholar

[44] J. Simon, Régularité de la solution d’une équation non linéaire dans 𝐑 N , Journées d’Analyse Non Linéaire, Lecture Notes in Math. 665, Springer, Berlin (1978), 205–227. 10.1007/BFb0061807Suche in Google Scholar

[45] Y. Song and S. Shi, Existence of infinitely many solutions for degenerate p-fractional Kirchhoff equations with critical Sobolev–Hardy nonlinearities, Z. Angew. Math. Phys. 68 (2017), no. 6, Paper No. 128. 10.1007/s00033-017-0867-8Suche in Google Scholar

[46] J. Sun, L. Li, M. Cencelj and B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in 3 , Nonlinear Anal. 186 (2019), 33–54. 10.1016/j.na.2018.10.007Suche in Google Scholar

[47] N. Van Thin, M. Xiang and B. Zhang, On critical Schrödinger–Kirchhoff-type problems involving the fractional p-Laplacian with potential vanishing at infinity, Mediterr. J. Math. 18 (2021), no. 1, Paper No. 1. 10.1007/s00009-020-01619-ySuche in Google Scholar

[48] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. 24, Birkhäuser, Boston, 1996. 10.1007/978-1-4612-4146-1Suche in Google Scholar

[49] M. Xiang, V. D. Rădulescu and B. Zhang, Existence results for singular fractional p-Kirchhoff problems, Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 3, 1209–1224. 10.1007/s10473-022-0323-5Suche in Google Scholar

[50] M. Xiang and B. Zhang, A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity, Discrete Contin. Dyn. Syst. Ser. S 12 (2019), no. 2, 413–433. 10.3934/dcdss.2019027Suche in Google Scholar

[51] M. Xiang, B. Zhang and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. A. 471 (2015), no. 2177, Article ID 20150034. 10.1098/rspa.2015.0034Suche in Google Scholar

[52] M. Xiang, B. Zhang and V. D. Rădulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity 29 (2016), no. 10, 3186–3205. 10.1088/0951-7715/29/10/3186Suche in Google Scholar

[53] M. Xiang, B. Zhang and V. D. Rădulescu, Superlinear Schrödinger–Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal. 9 (2020), no. 1, 690–709. 10.1515/anona-2020-0021Suche in Google Scholar

[54] C. Xiong, C. Chen, J. Chen and J. Sun, A concave-convex Kirchhoff type elliptic equation involving the fractional p-Laplacian and steep well potential, Complex Var. Elliptic Equ. 68 (2023), no. 6, 932–962. 10.1080/17476933.2022.2029852Suche in Google Scholar

[55] F. Zhang and M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differential Equations 269 (2020), no. 11, 10085–10106. 10.1016/j.jde.2020.07.013Suche in Google Scholar

Received: 2023-10-31
Revised: 2024-02-27
Published Online: 2024-03-26
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0385/html?lang=de
Button zum nach oben scrollen