Home Laplace convolutions of weighted averages of arithmetical functions
Article
Licensed
Unlicensed Requires Authentication

Laplace convolutions of weighted averages of arithmetical functions

  • Marco Cantarini ORCID logo , Alessandro Gambini ORCID logo EMAIL logo and Alessandro Zaccagnini ORCID logo
Published/Copyright: April 24, 2024

Abstract

Let G ( g ; x ) := n x g ( n ) be the summatory function of an arithmetical function g ( n ) . In this paper, we prove that we can write weighted averages of an arbitrary fixed number N of arithmetical functions g j ( n ) , j { 1 , , N } as an integral involving the convolution (in the sense of Laplace) of G j ( x ) , j { 1 , , N } . Furthermore, we prove an identity that allows us to obtain known results about averages of arithmetical functions in a very simple and natural way, and overcome some technical limitations for some well-known problems.

MSC 2020: 11P32; 44A05; 42A85

Communicated by Chantal David


Funding statement: The first and the second author are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The third author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM).

Acknowledgements

We thank Professor Alessandro Languasco for several discussions about this work and Professor Jasson Vindas for a conversation about the last chapter of this paper.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts Math., Springer, New York, 1976. 10.1007/978-1-4757-5579-4Search in Google Scholar

[2] M. Bănescu and D. Popa, A multiple Abel summation formula and asymptotic evaluations for multiple sums, Int. J. Number Theory 14 (2018), no. 4, 1197–1210. 10.1142/S1793042118500732Search in Google Scholar

[3] J. Brüdern, J. Kaczorowski and A. Perelli, Explicit formulae for averages of Goldbach representations, Trans. Amer. Math. Soc. 372 (2019), no. 10, 6981–6999. 10.1090/tran/7799Search in Google Scholar

[4] M. Cantarini, On the Cesàro average of the “Linnik numbers”, Acta Arith. 180 (2017), no. 1, 45–62. 10.4064/aa8601-3-2017Search in Google Scholar

[5] M. Cantarini, On the Cesàro average of the numbers that can be written as sum of a prime and two squares of primes, J. Number Theory 185 (2018), 194–217. 10.1016/j.jnt.2017.09.001Search in Google Scholar

[6] M. Cantarini, Some identities involving the Cesàro average of the Goldbach numbers, Math. Notes 106 (2019), no. 5–6, 688–702. 10.1134/S0001434619110038Search in Google Scholar

[7] M. Cantarini, A. Gambini and A. Zaccagnini, A Cesàro average for an additive problem with an arbitrary number of prime powers and squares, Res. Number Theory 8 (2022), no. 3, Paper No. 50. 10.1007/s40993-022-00347-4Search in Google Scholar

[8] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. 10.1007/978-1-4757-5927-3Search in Google Scholar

[9] J. N. Drožžinov and B. I. Zavjalov, Quasiasymptotic behavior of generalized functions, and Tauberian theorems in the complex domain, Mat. Sb. (N.S.) 102(144) (1977), no. 3, 372–390. 10.1070/SM1977v031n03ABEH002306Search in Google Scholar

[10] S. Egami and K. Matsumoto, Convolutions of the von Mangoldt function and related Dirichlet series, Number Theory, Ser. Number Theory Appl. 2, World Scientific, Hackensack (2007), 1–23. 10.1142/9789812770134_0001Search in Google Scholar

[11] R. Estrada and R. P. Kanwal, Asymptotic separation of variables, J. Math. Anal. Appl. 178 (1993), no. 1, 130–142. 10.1006/jmaa.1993.1296Search in Google Scholar

[12] R. Estrada and R. P. Kanwal, A Distributional Approach to Asymptotics, 2nd ed., Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser, Boston, 2002. 10.1007/978-0-8176-8130-2Search in Google Scholar

[13] G. B. Folland, Fourier Analysis and its Applications, Wadsworth & Brooks/Cole, Pacific Grove, 1992. Search in Google Scholar

[14] G. B. Folland, Real Analysis, 2nd ed., Pure Appl. Math. (New York), John Wiley & Sons, New York, 1999. Search in Google Scholar

[15] D. A. Goldston and L. Yang, The average number of Goldbach representations, preprint (2016), https://arxiv.org/abs/1601.06902. Search in Google Scholar

[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 2014. Search in Google Scholar

[17] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1933), 38–53. Search in Google Scholar

[18] J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55–62. 10.24033/bsmf.1196Search in Google Scholar

[19] I. Kiuchi and Y. Tanigawa, Bounds for double zeta-functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 4, 445–464. 10.2422/2036-2145.2006.4.02Search in Google Scholar

[20] A. Languasco and A. Zaccagnini, A Cesàro average of Hardy–Littlewood numbers, J. Math. Anal. Appl. 401 (2013), no. 2, 568–577. 10.1016/j.jmaa.2012.12.046Search in Google Scholar

[21] A. Languasco and A. Zaccagnini, A Cesàro average of Goldbach numbers, Forum Math. 27 (2015), no. 4, 1945–1960. 10.1515/forum-2012-0100Search in Google Scholar

[22] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge Stud. Adv. Math. 97, Cambridge University, Cambridge, 2007. 10.1017/CBO9780511618314Search in Google Scholar

[23] S. Pilipović, B. Stanković and A. Takači, Asymptotic Behaviour and Stieltjes Transformation of Distributions, Teubner-Texte Math. 116, BSB B. G. Teubner, Leipzig, 1990. Search in Google Scholar

[24] O. Ramaré and Y. Saouter, Short effective intervals containing primes, J. Number Theory 98 (2003), no. 1, 10–33. 10.1016/S0022-314X(02)00029-XSearch in Google Scholar

[25] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University, New York, 1986. Search in Google Scholar

[26] J. Vindas, Local behavior of distributions and applications, LSU Doctoral Dissertations, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, 2009. Search in Google Scholar

[27] J. Vindas and R. Estrada, A quick distributional way to the prime number theorem, Indag. Math. (N. S.) 20 (2009), no. 1, 159–165. 10.1016/S0019-3577(09)80009-8Search in Google Scholar

[28] V. S. Vladimirov, Methods of the Theory of Generalized Functions, Analytical Methods Spec. Funct. 6, Taylor & Francis, London, 2002. 10.1201/9781482288162Search in Google Scholar

Received: 2023-07-24
Revised: 2024-02-21
Published Online: 2024-04-24
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0259/html
Scroll to top button