Home Weighted bilinear multiplier theorems in Dunkl setting via singular integrals
Article
Licensed
Unlicensed Requires Authentication

Weighted bilinear multiplier theorems in Dunkl setting via singular integrals

  • Suman Mukherjee ORCID logo EMAIL logo and Sanjay Parui
Published/Copyright: April 24, 2024

Abstract

The purpose of this article is to present one and two-weight inequalities for bilinear multiplier operators in Dunkl setting with multiple Muckenhoupt weights. In order to do so, new results regarding Littlewood–Paley type theorems and weighted inequalities for multilinear Calderón–Zygmund operators in Dunkl setting are also proved.

MSC 2020: 42B15; 42B20; 42B25; 47G10; 47B34; 47B38

Funding statement: The first author is supported by a research fellowship from the Department of Atomic Energy (DAE), Government of India.

Acknowledgements

We thank the anonymous referee for her/his careful reading and helpful suggestions and comments.

  1. Communicated by: Christopher D. Sogge

References

[1] B. Amri, J.-P. Anker and M. Sifi, Three results in Dunkl analysis, Colloq. Math. 118 (2010), no. 1, 299–312. 10.4064/cm118-1-16Search in Google Scholar

[2] B. Amri, A. Gasmi and M. Sifi, Linear and bilinear multiplier operators for the Dunkl transform, Mediterr. J. Math. 7 (2010), no. 4, 503–521. 10.1007/s00009-010-0057-9Search in Google Scholar

[3] B. Amri and M. Sifi, Singular integral operators in Dunkl setting, J. Lie Theory 22 (2012), no. 3, 723–739. Search in Google Scholar

[4] T. A. Bui and X. T. Duong, Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math. 137 (2013), no. 1, 63–75. 10.1016/j.bulsci.2012.04.001Search in Google Scholar

[5] M. Cao, Q. Xue and K. Yabuta, Weak and strong type estimates for the multilinear pseudo-differential operators, J. Funct. Anal. 278 (2020), no. 10, Article ID 108454. 10.1016/j.jfa.2019.108454Search in Google Scholar

[6] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331. 10.2307/1998628Search in Google Scholar

[7] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Société Mathématique de France, Paris, 1978. Search in Google Scholar

[8] R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E, Beijing Lectures in Harmonic Analysis (Beijing 1984), Ann. of Math. Stud. 112, Princeton University, Princeton (1986), 3–45. 10.1515/9781400882090-002Search in Google Scholar

[9] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. 10.1007/BFb0058946Search in Google Scholar

[10] D. V. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Oper. Theory Adv. Appl. 215, Birkhäuser/Springer, Basel, 2011. 10.1007/978-3-0348-0072-3Search in Google Scholar

[11] F. Dai and W. Ye, Local restriction theorem and maximal Bochner–Riesz operators for the Dunkl transforms, Trans. Amer. Math. Soc. 371 (2019), no. 1, 641–679. 10.1090/tran/7285Search in Google Scholar

[12] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147–162. 10.1007/BF01244305Search in Google Scholar

[13] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Search in Google Scholar

[14] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa 1991), Contemp. Math. 138, American Mathematical Society, Providence (1992), 123–138. 10.1090/conm/138/1199124Search in Google Scholar

[15] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math. 29, American Mathematical Society, Providence, 2001. Search in Google Scholar

[16] X. T. Duong, R. Gong, L. Grafakos, J. Li and L. Yan, Maximal operator for multilinear singular integrals with non-smooth kernels, Indiana Univ. Math. J. 58 (2009), no. 6, 2517–2541. 10.1512/iumj.2009.58.3803Search in Google Scholar

[17] J. Dziubański and A. Hejna, Hörmander’s multiplier theorem for the Dunkl transform, J. Funct. Anal. 277 (2019), no. 7, 2133–2159. 10.1016/j.jfa.2019.03.002Search in Google Scholar

[18] J. Dziubański and A. Hejna, Remarks on Dunkl translations of non-radial kernels, J. Fourier Anal. Appl. 29 (2023), no. 4, Paper No. 52. 10.1007/s00041-023-10034-2Search in Google Scholar

[19] M. Fujita and N. Tomita, Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6335–6353. 10.1090/S0002-9947-2012-05700-XSearch in Google Scholar

[20] L. Grafakos, Classical Fourier Analysis, 3rd ed., Grad. Texts in Math. 249, Springer, New York, 2014. 10.1007/978-1-4939-1194-3Search in Google Scholar

[21] L. Grafakos, L. Liu, D. Maldonado and D. Yang, Multilinear analysis on metric spaces, Dissertationes Math. 497 (2014), 121. 10.4064/dm497-0-1Search in Google Scholar

[22] L. Grafakos, L. Liu and D. Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), no. 2, 296–310. 10.7146/math.scand.a-15099Search in Google Scholar

[23] L. Grafakos, L. Liu and D. Yang, Multiple-weighted norm inequalities for maximal multi-linear singular integrals with non-smooth kernels, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 4, 755–775. 10.1017/S0308210509001383Search in Google Scholar

[24] L. Grafakos and R. H. Torres, Multilinear Calderón–Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164. 10.1006/aima.2001.2028Search in Google Scholar

[25] G. Hu and C.-C. Lin, Weighted norm inequalities for multilinear singular integral operators and applications, Anal. Appl. (Singap.) 12 (2014), no. 3, 269–291. 10.1142/S0219530514500043Search in Google Scholar

[26] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1–15. 10.4310/MRL.1999.v6.n1.a1Search in Google Scholar

[27] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264. 10.1016/j.aim.2008.10.014Search in Google Scholar

[28] K. Li and W. Sun, Weighted estimates for multilinear Fourier multipliers, Forum Math. 27 (2015), no. 2, 1101–1116. 10.1515/forum-2012-0128Search in Google Scholar

[29] S. Mukherjee and S. Parui, Weighted inequalities for multilinear fractional operators in Dunkl setting, J. Pseudo-Differ. Oper. Appl. 13 (2022), no. 3, Paper No. 34. 10.1007/s11868-022-00464-9Search in Google Scholar

[30] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis. Vol. II, Cambridge Stud. Adv. Math. 138, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139047081Search in Google Scholar

[31] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. 10.1215/S0012-7094-99-09813-7Search in Google Scholar

[32] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2413–2438. 10.1090/S0002-9947-03-03235-5Search in Google Scholar

[33] M. Rösler, Dunkl operators: Theory and applications, Orthogonal Polynomials and Special Functions, Lecture Notes in Math. 1817, Springer, Berlin (2003), 93–135. 10.1007/3-540-44945-0_3Search in Google Scholar

[34] J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), no. 2, 395–404. 10.1215/S0012-7094-86-05324-XSearch in Google Scholar

[35] C. Tan, Y. Han, Y. Han, M.-Y. Lee and J. Li, Singular integral operators, T1 theorem, Littlewood–Paley theory and Hardy spaces in Dunkl setting, preprint (2022), https://arxiv.org/abs/2204.01886. Search in Google Scholar

[36] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform, J. Anal. Math. 97 (2005), 25–55. 10.1007/BF02807401Search in Google Scholar

[37] N. Tomita, A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal. 259 (2010), no. 8, 2028–2044. 10.1016/j.jfa.2010.06.010Search in Google Scholar

[38] B. Wróbel, Approaching bilinear multipliers via a functional calculus, J. Geom. Anal. 28 (2018), no. 4, 3048–3080. 10.1007/s12220-017-9945-6Search in Google Scholar PubMed PubMed Central

Received: 2023-11-06
Revised: 2024-02-16
Published Online: 2024-04-24
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0398/html
Scroll to top button