Abstract
Let L be an even lattice of odd rank with discriminant group 
                  
                     
References
[1] A. Adolphson, On the distribution of angles of Kloosterman sums, J. Reine Angew. Math. 395 (1989), 214–220. 10.1515/crll.1989.395.214Suche in Google Scholar
[2] S. Ahlgren and N. Andersen, Kloosterman sums and Maass cusp forms of half integral weight for the modular group, Int. Math. Res. Not. IMRN 2018 (2018), no. 2, 492–570. Suche in Google Scholar
[3] Ş. Alaca and G. Doyle, Explicit evaluation of double Gauss sums, J. Comb. Number Theory 9 (2017), no. 1, 47–61. Suche in Google Scholar
[4] N. Andersen, Singular invariants and coefficients of harmonic weak Maass forms of weight 5/2, Forum Math. 29 (2017), no. 1, 7–29. 10.1515/forum-2015-0051Suche in Google Scholar
[5] E. H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp. 22 (1968), 565–578. 10.1090/S0025-5718-1968-0226829-0Suche in Google Scholar
[6] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Canadian Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1998. Suche in Google Scholar
[7] J. H. Bruinier, Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors, Lecture Notes in Math. 1780, Springer, Berlin, 2002. 10.1007/b83278Suche in Google Scholar
[8] J. H. Bruinier and M. Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. 10.1007/s229-001-8027-1Suche in Google Scholar
[9] J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms, Adv. Math. 246 (2013), 198–219. 10.1016/j.aim.2013.05.028Suche in Google Scholar
[10] E. Cohen, Rings of arithmetic functions. II. The number of solutions of quadratic congruences, Duke Math. J. 21 (1954), 9–28. 10.1215/S0012-7094-54-02102-XSuche in Google Scholar
[11] H. Cohen and F. Strömberg, Modular Forms. A Classical Approach, Grad. Stud. Math. 179, American Mathematical Society, Providence, 2017. 10.1090/gsm/179Suche in Google Scholar
[12] W. Duke, Ö. Imamoḡlu and A. Tóth, Cycle integrals of the j-function and mock modular forms, Ann. of Math. (2) 173 (2011), no. 2, 947–981. 10.4007/annals.2011.173.2.8Suche in Google Scholar
[13] W. Duke, Ö. Imamoḡlu and A. Tóth, Geometric invariants for real quadratic fields, Ann. of Math. (2) 184 (2016), no. 3, 949–990. 10.4007/annals.2016.184.3.8Suche in Google Scholar
[14] B. Gross, W. Kohnen and D. Zagier, Heegner points and derivatives of L-series. II, Math. Ann. 278 (1987), no. 1–4, 497–562. 10.1007/BF01458081Suche in Google Scholar
[15] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, American Mathematical Society, Providence, 1997. 10.1090/gsm/017Suche in Google Scholar
[16] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar
[17] N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton University, Princeton, 1988. 10.1515/9781400882120Suche in Google Scholar
[18] 
H. D.  Kloosterman,
On the representation of numbers in the form 
                  
                     
[19] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237–268. 10.1007/BF01455989Suche in Google Scholar
[20] H. Rademacher, On the partition function p(n), Proc. Lond. Math. Soc. (2) 43 (1937), no. 4, 241–254. 10.1112/plms/s2-43.4.241Suche in Google Scholar
[21] M. Schwagenscheidt, Eisenstein series for the Weil representation, J. Number Theory 193 (2018), 74–90. 10.1016/j.jnt.2018.05.014Suche in Google Scholar
[22] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proceedings of Symposia in Pure Mathematics Vol. VIII, American Mathematical Society, Providence (1965), 1–15. 10.1090/pspum/008/0182610Suche in Google Scholar
[23] T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83–126. 10.1017/S0027763000016706Suche in Google Scholar
[24] H. Weber, Ueber die mehrfachen Gausschischen Summen, J. Reine Angew. Math. 74 (1872), 14–56. 10.1515/crll.1872.74.14Suche in Google Scholar
[25] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA 34 (1948), 204–207. 10.1073/pnas.34.5.204Suche in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
 - Square-integrable representations and the coadjoint action of solvable Lie groups
 - Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices
 - Nef vector bundles on a hyperquadric with first Chern class two
 - Scaling spectrum of a class of self-similar measures with product form on ℝ
 - Idempotent decomposition of regularity and characterization for the accumulation of associated spectrum
 - Geodesic orbit Randers metrics in homogeneous bundles over generalized Stiefel manifolds
 - Proof of some conjectures of Guo and of Tang
 - On Absolute and Quantitative Subspace Theorems
 - Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic
 - Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
 - The Weil bound for generalized Kloosterman sums of half-integral weight
 - Relative Rota–Baxter groups and skew left braces
 - Asai gamma factors over finite fields
 - Representations of non-finitely graded Lie algebras related to Virasoro algebra
 - Multiple solutions for fractional elliptic systems
 - Arithmetic Bohr radius for the Minkowski space
 - On Strichartz estimates for many-body Schrödinger equation in the periodic setting
 
Artikel in diesem Heft
- Frontmatter
 - Square-integrable representations and the coadjoint action of solvable Lie groups
 - Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices
 - Nef vector bundles on a hyperquadric with first Chern class two
 - Scaling spectrum of a class of self-similar measures with product form on ℝ
 - Idempotent decomposition of regularity and characterization for the accumulation of associated spectrum
 - Geodesic orbit Randers metrics in homogeneous bundles over generalized Stiefel manifolds
 - Proof of some conjectures of Guo and of Tang
 - On Absolute and Quantitative Subspace Theorems
 - Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic
 - Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals
 - The Weil bound for generalized Kloosterman sums of half-integral weight
 - Relative Rota–Baxter groups and skew left braces
 - Asai gamma factors over finite fields
 - Representations of non-finitely graded Lie algebras related to Virasoro algebra
 - Multiple solutions for fractional elliptic systems
 - Arithmetic Bohr radius for the Minkowski space
 - On Strichartz estimates for many-body Schrödinger equation in the periodic setting