Home Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices
Article
Licensed
Unlicensed Requires Authentication

Deviation probabilities for extremal eigenvalues of large Chiral non-Hermitian random matrices

  • Yutao Ma and Siyu Wang EMAIL logo
Published/Copyright: April 24, 2024

Abstract

Consider the chiral non-Hermitian random matrix ensemble with parameters n and v, and let ( ζ i ) 1 i n be its n eigenvalues with positive x-coordinate. In this paper, we establish deviation probabilities and moderate deviation probabilities for the spectral radius ( n n + v ) 1 2 max 1 i n | ζ i | 2 , as well as ( n n + v ) 1 2 min 1 i n | ζ i | 2 .

MSC 2020: 60F10; 15B52

Communicated by Maria Gordina


Award Identifier / Grant number: 12171038

Award Identifier / Grant number: 11871008

Award Identifier / Grant number: 985

Funding statement: The research of Yutao Ma was supported in part by the National Natural Science Foundation of China (Projects 12171038, 11871008 and 985).

A Appendix

In this section, we provide the proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1.

The expression (4.1) reminds us to work on the integral c n , v a n , v v + e - v τ j ( t ) 𝑑 t and the factor. Utilize the Stirling formula

log Γ ( z ) = ( z - 1 2 ) log z - z + O ( 1 )

for z large enough to write

(A.1) log 2 v + 1 2 v 2 j + v - 1 Γ ( j + v + 1 2 ) Γ ( 2 j + 2 v ) Γ ( j ) = ( 2 j + v ) ( 1 - log 2 ) - ( j - 1 2 ) log ( j v ) - ( j + v - 1 2 ) log ( 1 + j v ) + O ( 1 )

for j large enough, and this asymptotic still holds for j bounded since both Γ ( j ) and ( j - 1 2 ) log j inherit the boundedness of j. When c n , v a n , v v > x j , it follows from Lemma 2.5 that

log ( v c n , v a n , v v + e - v τ j ( t ) 𝑑 t ) - log ( v τ j ( c n , v a n , v v ) ) - v τ j ( c n , v a n , v v ) .

By definition,

τ j ( c n , v a n , v v ) = c n , v a n , v v + v 2 + c n , v 2 a n , v 2 + c n , v a n , v v 2 ( v 2 + c n , v 2 a n , v 2 ) - 2 j - 1 c n , v a n , v .

When v c n , v a n , v or v = O ( c n , v a n , v ) , we see the unboundedness of

v τ j ( c n , v a n , v v ) = c n , v a n , v v + o ( c n , v a n , v v ) ,

which is due to the fact c n , v a n , v v 2 n a n , v + . By conditions, we have

2 n a n , v c n , v a n , v v 2 n a n , v .

This implies that

log ( v τ j ( c n , v a n , v v ) ) = O ~ ( log n ) .

For the case v a n , v c n , v , we see v n and τ j ( c n , v a n , v v ) = O ( 1 ) . Therefore

v τ j ( c n , v a n , v v ) = v + o ( v ) ,

and furthermore,

log ( v τ j ( c n , v a n , v v ) = O ( log v ) = O ~ ( log n ) .

Also, when j satisfying c n , v a n , v v > x j , Lemma 2.5 entails that

log ( v c n , v a n , v v + e - v τ j ( t ) 𝑑 t ) - log ( v τ j ( M ) ) - v τ j ( c n , v a n , v v ) + log ( 1 - e - v τ j ( M ) + v τ j ( c n , v a n , v v ) )

for any M > c n , v a n , v v . Choose M = c n , v ( 1 + a n , v ) v . Similarly, we see

log ( v τ j ( M ) ) = O ~ ( log n ) .

For the term v τ j ( M ) - v τ j ( c n , v a n , v v ) , since τ j is increasing on [ x j , ) , we know

v τ j ( M ) - τ j ( c n , v a n , v v ) τ j ( c n , v a n , v v ) ( M - c n , v a n , v v ) = τ j ( c n , v a n , v v ) c n , v .

The analysis above shows that

τ j ( c n , v a n , v v ) c n , v = c n , v v v τ j ( c n , v a n , v v ) ,

which tends to the positive infinity since both v τ j ( c n , v a n , v v ) and c n , v v tend to the positive infinity. Hence, we claim that

log ( 1 - e - v τ j ( M ) + v τ j ( c n , v a n , v v ) ) = o ( 1 ) .

Therefore,

(A.2)

log ( X j a n , v ) = - v τ j ( c n , v a n , v v ) + ( 2 j + v ) ( 1 - log 2 ) - ( j - 1 2 ) log ( j v )
- ( j + v - 1 2 ) log ( 1 + j v ) + O ~ ( log n )

for n large enough and for any j with c n , v a n , v v > x j . Putting the expression

τ j ( y ) = u ( y ) - 2 j - 1 v log y

into (A.2), we have that

log ( X j a n , v ) = ( 2 j + v - 1 ) log v + ( 2 j + v ) ( 1 - log 2 ) - ( j + v - 1 2 ) log ( j + v )
- j log j - v u ( c n , v x v ) + ( 2 j - 1 ) log ( c n , v x v ) + O ~ ( log n ) .

Now we suppose that c n , v a n , v v x j . Lemma 2.5 implies the two inequalities

log ( v c n , v a n , v v + e - v τ j ( t ) 𝑑 t ) - v τ j ( x j ) + log ( 4 j ) ,
log ( v c n , v a n , v v + e - v τ j ( t ) 𝑑 t ) - v τ j ( x j ) - log ( v τ j ( M ) ) + log ( 1 - e - v τ j ( M ) + v τ j ( c n , v a n , v v ) )

for any M > x j . Choose M = c n , v ( 1 + a n , v ) v , which verifies the condition M > x j , since c n , v a n , v v > x j . A similar argument leads again that log ( v τ j ( M ) ) = O ~ ( log n ) and

log ( 1 - e - v τ j ( M ) + v τ j ( c n , v a n , v v ) ) = o ( 1 ) .

Therefore, we have that

log ( v c n , v a n , v v + e - v τ j ( t ) 𝑑 t ) = - v τ j ( x j ) + O ~ ( log n ) .

Combining this asymptotic with the expression (A.1), we get that

(A.3) log ( X j a n , v ) = - v τ j ( x j ) + ( 2 j + v ) ( 1 - log 2 ) - ( j - 1 2 ) log ( j v ) - ( j + v - 1 2 ) log ( 1 + j v ) + O ~ ( log n )

for j such that c n , v a n , v v x j . The second item of Lemma 2.5 says

4 ( j - 3 4 ) ( j - 3 4 + v ) v 2 x j 2 4 ( j - 1 2 ) ( j - 1 2 + v ) ,

which implies

v 2 + v 2 x j 2 = v + 2 j + O ( 1 ) , log ( v 2 x j 2 ) = log 4 j ( j + v ) v 2 + o ( 1 ) .

Thus, by definition

v τ j ( x j ) = v 2 + v 2 x j 2 - v log ( 1 + 1 + v 2 x j 2 ) - ( 2 j - 1 ) log x j
= v + 2 j - v log 2 ( j + v ) v - ( j - 1 2 ) log 4 j ( j + v ) v 2 + O ( 1 ) .

Putting this back into (A.3) and combining like terms, we get

log ( X j a n , v ) = O ~ ( log n ) .

Proof of Lemma 4.2.

The argument will be similar to that of Lemma 4.1. For the second item, we only need to prove that

log ( v 0 c n , v a n , v v e - v τ j ( t ) 𝑑 t ) = - v τ j ( c n , v a n , v v ) + O ~ ( log n ) .

Lemma 2.5 guarantees that

log ( v 0 c n , v a n , v v e - v τ j ( t ) 𝑑 t ) - log ( - v τ j ( c n , v a n , v v ) ) - v τ j ( c n , v a n , v v )

and

log ( v 0 c n , v a n , v v e - v τ j ( t ) 𝑑 t ) - log ( - v τ j ( c n , v a n , v 2 v ) ) - v τ j ( c n , v a n , v v ) + log ( 1 - e v τ j ( c n , v a n , v v ) - v τ j ( c n , v a n , v 2 v ) ) ,

once c n , v a n , v v x j . Hence, it remains to prove that

log ( - v τ j ( c n , v a n , v v ) ) = O ~ ( log n ) , e v τ j ( c n , v a n , v v ) - v τ j ( c n , v a n , v 2 v ) = o ( 1 ) .

Indeed, using the precise form of τ j , we have that

v τ j ( c n , v a n , v v ) - v τ j ( c n , v a n , v 2 v ) = - ( 2 j - 1 ) log 2 + v 2 + c n , v 2 a n , v 2 - v 2 + c n , v 2 a n , v 2 4
+ v log ( 1 + v 2 + c n , v 2 a n , v 2 4 - v 2 + c n , v 2 a n , v 2 v + v 2 + c n , v 2 a n , v 2 )
- ( 2 j - 1 ) log 2 + v 2 + c n , v 2 a n , v 2 - v 2 + c n , v 2 a n , v 2 4 .

The condition that c n , v a n , v v x j 2 j ( j + v ) implies the following inequality:

v 2 + c n , v 2 a n , v 2 v + 2 j .

Since v 2 + c n , v 2 a n , v 2 4 v , it follows that

v τ j ( c n , v a n , v v ) - v τ j ( c n , v a n , v 2 v ) - ( 2 log 2 - 1 ) j + log 2 -

as j . Hence,

e v τ j ( c n , v a n , v v ) - v τ j ( c n , v a n , v 2 v ) = o ( 1 ) .

It remains to prove that log ( - v τ j ( c n , v a n , v v ) ) = O ~ ( log n ) . Recall

- τ j ( c n , v a n , v v ) = - c n , v a n , v v + v 2 + c n , v 2 a n , v 2 - c n , v a n , v v 2 ( v 2 + c n , v 2 a n , v 2 ) + 2 j - 1 c n , v a n , v .

When c n , v a n , v v , it follows from the fact c n , v a n , v v x j 2 j ( j + v ) that v j and j n a n , v + o ( n a n , v ) . Thus

- v τ j ( c n , v a n , v v ) = 2 j v c n , v a n , v - v + o ( 1 ) = O ( j v n a n , v ) + .

On the one hand, j n says

log j v n a n , v log v a n , v = log v n n a n , v = 1 2 log n + o ( log n ) .

On the other hand, it is easy to see that

log j v n a n , v log v .

Consequently, we have the desired expression

log ( - v τ j ( c n , v a n , v v ) ) = O ~ ( log n ) .

The same argument works when v = O ( c n , v a n , v ) . Now we consider the last case that v c n , v a n , v , which indicates the following lower bound of j:

j c n , v 2 a n , v 2 v + o ( c n , v 2 a n , v 2 v ) .

Under this assumption, it holds that

- v τ j ( c n , v a n , v v ) = - c n , v a n , v 2 v + 2 j v c n , v a n , v + o ( n + v a n , v ) = O ( j v c n , v a n , v ) +

as n . The last limit is due to the fact that

j v c n , v a n , v c n , v a n , v v 2 n a n , v + .

Similarly, using the inequality n a n , v j v c n , v a n , v n 2 n a n , v , we claim that

log ( - v τ j ( c n , v a n , v v ) ) = O ~ ( log n ) .

Now, we prove the first item, which means working on j with c n , v a n , v v > x j . As for the second item of Lemma 3.1, it is enough to prove that

(A.4) log ( v 0 c n , v a n , v v e - v τ j ( t ) 𝑑 t ) = - v τ j ( x j ) + O ~ ( log n ) .

Indeed, Lemma 2.4 entails again that

log ( v 0 c n , v a n , v v e - v τ j ( t ) 𝑑 t ) log c n , v a n , v v - v τ j ( x j ) ,
log ( v 0 c n , v a n , v v e - v τ j ( t ) 𝑑 t ) - log ( - v τ j ( M ) ) + log ( 1 - e v τ j ( x j ) - v τ j ( M ) ) - v τ j ( x j )

for any 0 < M < x j . It is clear that

log c n , v a n , v v = O ~ ( log n ) .

Choose M = j ( j + 4 v ) 2 v . The remainder of the proof will be focused on

log ( - v τ j ( j ( j + 4 v ) 2 v ) ) = O ~ ( log n ) and v τ j ( x j ) - v τ j ( j ( j + 4 v ) 2 v ) - .

By definition, we have that

- v τ j ( j ( j + 4 v ) 2 v ) = 3 v j j + 4 v + o ( v j j + 4 v ) + .

Hence,

log ( - v τ j ( j ( j + 4 v ) 2 v ) ) = O ~ ( log n ) .

Meanwhile, it follows from the definition of τ j and the fact x j > j ( j + 4 v ) 2 v that

v τ j ( x j ) - v τ j ( j ( j + 4 v ) 2 v ) v 1 + x j 2 - v - j 2 - ( 2 j - 1 ) log ( 2 v x j j ( j + 4 v ) )
v + 2 j - v - j 2 - ( 2 j - 1 ) log ( 4 ( j - 1 ) ( j - 1 + v ) j ( j + 4 v ) )
( 3 2 - 2 log 2 ) j ,

which tends to - as n . The proof is then accomplished. ∎

Acknowledgements

The authors are grateful to the Editor, Associate Editor, and anonymous referee for their helpful feedback and valuable comments, which greatly improved this manuscript.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 2nd ed., Dover Publications, New York, 1972. Search in Google Scholar

[2] G. Akemann, The complex Laguerre symplectic ensemble of non-Hermitian matrices, Nuclear Phys. B 730 (2005), no. 3, 253–299. 10.1016/j.nuclphysb.2005.09.039Search in Google Scholar

[3] G. Akemann, J. Baik and P. Di Francesco, The Oxford Handbook of Random Matrix Theory, Oxford University, Oxford, 2011. Search in Google Scholar

[4] G. Akemann and M. Bender, Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles, J. Math. Phys. 51 (2010), no. 10, Article ID 103524. 10.1063/1.3496899Search in Google Scholar

[5] G. Akemann, S.-S. Byun and N.-G. Kang, A non-Hermitian generalisation of the Marchenko–Pastur distribution: From the circular law to multi-criticality, Ann. Henri Poincaré 22 (2021), no. 4, 1035–1068. 10.1007/s00023-020-00973-7Search in Google Scholar

[6] G. W. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices, Cambridge Stud. Adv. Math. 118, Cambridge University, Cambridge, 2010. 10.1017/CBO9780511801334Search in Google Scholar

[7] Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, 2nd ed., Springer Ser. Statist., Springer, New York, 2009. 10.1007/978-1-4419-0661-8Search in Google Scholar

[8] J. Baik, P. Deift and T. Suidan, Combinatorics and Random Matrix Theory, Grad. Stud. Math. 172, American Mathematical Society, Providence, 2016. Search in Google Scholar

[9] D. Chafaï and S. Péché, A note on the second order universality at the edge of Coulomb gases on the plane, J. Stat. Phys. 156 (2014), no. 2, 368–383. 10.1007/s10955-014-1007-xSearch in Google Scholar

[10] S. Chang, T. Jiang and Y. Qi, Eigenvalues of large chiral non-Hermitian random matrices, J. Math. Phys. 61 (2020), no. 1, Article ID 013508. 10.1063/1.5088607Search in Google Scholar

[11] C. Charlier, Asymptotics of determinants with a rotation-invariant weight and discontinuities along circles, Adv. Math. 408 (2022), Article ID 108600. 10.1016/j.aim.2022.108600Search in Google Scholar

[12] C. Charlier, Large gap asymptotics on annuli in the random normal matrix model, Math. Ann. 388 (2024), no. 4, 3529–3587. 10.1007/s00208-023-02603-zSearch in Google Scholar PubMed PubMed Central

[13] P. Di Francesco, M. Gaudin, C. Itzykson and F. Lesage, Laughlin’s wave functions, Coulomb gases and expansions of the discriminant, Internat. J. Modern Phys. A 9 (1994), no. 24, 4257–4351. 10.1142/S0217751X94001734Search in Google Scholar

[14] P. J. Forrester, Log-Gases and Random Matrices, London Math. Soc. Monogr. Ser. 34, Princeton University, Princeton, 2010. 10.1515/9781400835416Search in Google Scholar

[15] R. Grobe, F. Haake and H.-J. Sommers, Quantum distinction of regular and chaotic dissipative motion, Phys. Rev. Lett. 61 (1988), no. 17, 1899–1902. 10.1103/PhysRevLett.61.1899Search in Google Scholar PubMed

[16] K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), no. 2, 437–476. 10.1007/s002200050027Search in Google Scholar

[17] B. A. Khoruzhenko and H.-J. Sommers, Non-Hermitian ensembles, The Oxford Handbook of Random Matrix Theory, Oxford University, Oxford (2011), 376–397. Search in Google Scholar

[18] E. Kostlan, On the spectra of Gaussian matrices, Linear Algebra Appl. 162 (1992), 385–388. 10.1016/0024-3795(92)90386-OSearch in Google Scholar

[19] B. Lacroix-A-Chez-Toine, A. Grabsch, S. N. Majumdar and G. Schehr, Extremes of 2d Coulomb gas: Universal intermediate deviation regime, J. Stat. Mech. Theory Exp. (2018), no. 1, Article ID 013203. 10.1088/1742-5468/aa9bb2Search in Google Scholar

[20] Y. T. Ma, Unified limits and large deviation principles for β-Laguerre ensembles in global regime, Acta Math. Sin. (Engl. Ser.) 39 (2023), no. 7, 1271–1288. 10.1007/s10114-023-1493-3Search in Google Scholar

[21] V. A. Marchenko and L. A. Pastur, Distributions of some sets of random matrices, Math. USSR-Sb. 1 (1967), 457–483. 10.1070/SM1967v001n04ABEH001994Search in Google Scholar

[22] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University, Cambridge, 2010. Search in Google Scholar

[23] J. C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett. 93 (2004), Article ID 222001. 10.1103/PhysRevLett.93.222001Search in Google Scholar PubMed

[24] B. Rider, A limit theorem at the edge of a non-Hermitian random matrix ensemble, J. Phys. A 36 (2003), 3401–3409. 10.1088/0305-4470/36/12/331Search in Google Scholar

[25] B. C. Rider and C. D. Sinclair, Extremal laws for the real Ginibre ensemble, Ann. Appl. Probab. 24 (2014), no. 4, 1621–1651. 10.1214/13-AAP958Search in Google Scholar

[26] M. A. Stephanov, Random matrix model for qcd at finite density and the nature of the quenched limit, Phys. Rev. Lett. 76 (1996), 4472–4475. 10.1103/PhysRevLett.76.4472Search in Google Scholar PubMed

Received: 2023-07-14
Revised: 2024-03-26
Published Online: 2024-04-24
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0253/html
Scroll to top button