Startseite Mathematik Weil representations of twisted loop groups of type A n (2)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weil representations of twisted loop groups of type A n (2)

  • Yanze Chen und Yongchang Zhu EMAIL logo
Veröffentlicht/Copyright: 13. Januar 2025

Abstract

We construct Weil representations of twisted loop groups of type A n ( 2 ) over local fields. We prove that the associated cover of the twisted loop group is the two fold metaplectic cover of the affine Kac–Moody group of type A n ( 2 ) given by Patnaik and Puskas.

MSC 2020: 22E67; 11F27

Communicated by Freydoon Shahidi


Funding statement: The second author’s research is supported by Hong Kong RGC grant 16307122.

References

[1] N. Bourbaki, Groupes et Algebres de Lie, Chaps IV-VI, Hermann, Paris, 1968. Suche in Google Scholar

[2] H. Garland and Y. Zhu, On the Siegel–Weil theorem for loop groups, I, Duke Math. J. 157 (2011), no. 2, 283–336. 10.1215/00127094-2011-007Suche in Google Scholar

[3] H. Garland and Y. Zhu, On the Siegel–Weil theorem for loop groups, II, Amer. J. Math. 133 (2011), no. 6, 1663–1712. 10.1353/ajm.2011.0048Suche in Google Scholar

[4] A. B. Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Moscow Math J. 1 (2001), no. 4, 551–568. 10.17323/1609-4514-2001-1-4-551-568Suche in Google Scholar

[5] V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University, Cambridge, 1990. 10.1017/CBO9780511626234Suche in Google Scholar

[6] D. Liu and Y. Zhu, On the theta functional of Weil representations for symplectic loop groups, J. Algebra 324 (2010), no. 11, 3115–3130. 10.1016/j.jalgebra.2010.06.009Suche in Google Scholar

[7] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Éc. Norm. Supér. (4) 2 (1969), 1–62. 10.24033/asens.1174Suche in Google Scholar

[8] M. M. Patnaik and A. Puskás, Metaplectic covers of Kac–Moody groups and Whittaker functions, Duke Math. J. 168 (2019), no. 4, 553–653. 10.1215/00127094-2018-0049Suche in Google Scholar

[9] J. Tits, Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra 105 (1987), no. 2, 542–573. 10.1016/0021-8693(87)90214-6Suche in Google Scholar

[10] A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211. 10.1007/BF02391012Suche in Google Scholar

[11] Y. Zhu, Theta functions and Weil representations of loop symplectic groups, Duke Math. J. 143 (2008), no. 1, 17–39. 10.1215/00127094-2008-014Suche in Google Scholar

Received: 2023-05-25
Revised: 2024-10-20
Published Online: 2025-01-13
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0196/html?lang=de
Button zum nach oben scrollen