Startseite Approximation via statistical measurable convergence with respect to power series for double sequences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Approximation via statistical measurable convergence with respect to power series for double sequences

  • Devia Narrania ORCID logo und Kuldip Raj ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. März 2023

Abstract

In this paper, we introduce and study a new type of convergences using statistical convergence via the power series method and measurable convergence. We also study their relationship with other convergences. Further, we demonstrate Korovkin-type approximation theorems for double sequences of positive linear operators using these newly specified convergences, and we also provide illustrations that demonstrate how our proven theorems are better than their classical counterparts. Finally, we have determined rates of statistical product measurable convergence using the power series approach and the modulus of continuity.

MSC 2010: 40G10; 41A36

Communicated by Siegfried Echterhoff


Funding statement: The first author thanks the Council of Scientific and Industrial Research (CSIR), India for partial support under Grant No. 09/1046(13736)/2022-EMR-I, dated 08/04/2022.

References

[1] P. Baliarsingh and L. Nayak, On deferred statistical convergence of order β for fuzzy fractional difference sequence and applications, Soft Comput. 26 (2022), 2625–2634. 10.1007/s00500-021-06649-6Suche in Google Scholar

[2] S. Baron and U. Stadtmüller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. Appl. 211 (1997), no. 2, 574–589. 10.1006/jmaa.1997.5473Suche in Google Scholar

[3] K. Demirci, S. Yıldız and F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 6, 3871–3883. 10.1007/s40840-020-00902-1Suche in Google Scholar

[4] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. 10.4064/cm-2-3-4-241-244Suche in Google Scholar

[5] A. Gökhan and M. Güngör, On pointwise statistical convergence, Indian J. Pure Appl. Math. 33 (2002), no. 9, 1379–1384. Suche in Google Scholar

[6] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum 2 (2007), no. 5–8, 365–374. 10.12988/imf.2007.07033Suche in Google Scholar

[7] B. Hazarika, N. Subramanian and M. Mursaleen, Korovkin-type approximation theorem for Bernstein operator of rough statistical convergence of triple sequences, Adv. Oper. Theory 5 (2020), no. 2, 324–335. 10.1007/s43036-019-00021-0Suche in Google Scholar

[8] B. B. Jena, S. K. Paikray and H. Dutta, A new approach to Korovkin-type approximation via deferred Cesàro statistical measurable convergence, Chaos Solitons Fractals 148 (2021), Paper No. 111016. 10.1016/j.chaos.2021.111016Suche in Google Scholar

[9] P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR (N. S.) 90 (1953), 961–964. Suche in Google Scholar

[10] S. A. Mohiuddine, B. Hazarika and M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat 33 (2019), no. 14, 4549–4560. 10.2298/FIL1914549MSuche in Google Scholar

[11] M. A. Mursaleen and S. S. Capizzano, Statistical convergence via q-calculus and a Korovkin’s type Approximation theorem, Axioms 11 (2022), Paper No. 70 10.3390/axioms11020070Suche in Google Scholar

[12] M. A. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), no. 1, 223–231. 10.1016/j.jmaa.2003.08.004Suche in Google Scholar

[13] L. Nayak, B. C. Tripathy and P. Baliarsingh, On deferred-statistical convergence of uncertain fuzzy sequences, Int. J. Gen. Syst. 51 (2022), no. 6, 631–647. 10.1080/03081079.2022.2052062Suche in Google Scholar

[14] R. E. Powell and M. S. Shah, Summability Theory and its Applications, Van Nostrand-Reinhold, New York, 1972. Suche in Google Scholar

[15] K. Raj, C. Sharma and S. Jasrotia, Orlicz-lacunary convergent double sequences and their applications to statistical convergence, Khayyam J. Math. 8 (2022), no. 1, 102–114. Suche in Google Scholar

[16] P. O. Şahin and F. Dirik, A Korovkin-type theorem for double sequences of positive linear operators via power series method, Positivity 22 (2018), no. 1, 209–218. 10.1007/s11117-017-0508-7Suche in Google Scholar

[17] N. Şahin Bayram and S. Yıldız, Approximation by statistical convergence with respect to power series methods, Hacet. J. Math. Stat. 51 (2022), no. 4, 1108–1120. 10.15672/hujms.1022072Suche in Google Scholar

[18] K. Saini, K. Raj and M. Mursaleen, Deferred Cesàro and deferred Euler equi-statistical convergence and its applications to Korovkin-type approximation theorem, Int. J. Gen. Syst. 50 (2021), no. 5, 567–579. 10.1080/03081079.2021.1942867Suche in Google Scholar

[19] S. Samantaray, L. Nayak and P. Baliarsingh, On fractional double difference sequences and their statistical convergence, J. Anal. 30 (2022), no. 4, 1753–1764. 10.1007/s41478-022-00429-7Suche in Google Scholar

[20] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375. 10.2307/2308747Suche in Google Scholar

[21] S. Sharma, U. P. Singh and K. Raj, Applications of deferred Cesàro statistical convergence of sequences of fuzzy numbers of order ( ξ , ω ) , J. Intell. Fuzzy Syst. 41 (2021), 7363–7372. 10.3233/JIFS-211201Suche in Google Scholar

[22] H. M. Srivastava, B. B. Jena and S. K. Paikray, Deferred Cesàro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal. 20 (2019), no. 9, 1777–1792. Suche in Google Scholar

[23] H. M. Srivastava, B. B. Jena and S. K. Paikray, Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, Paper No. 144. 10.1007/s13398-020-00875-7Suche in Google Scholar

[24] H. M. Srivastava, B. B. Jena and S. K. Paikray, Statistical Riemann and Lebesgue integrable sequence of functions with Korovkin-type approximation theorems, Axioms 10 (2021), Paper No. 229. 10.3390/axioms10030229Suche in Google Scholar

[25] M. Ünver and C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Funct. Anal. Optim. 40 (2019), no. 5, 535–547. 10.1080/01630563.2018.1561467Suche in Google Scholar

[26] V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR (N. S.) 115 (1957), 17–19. Suche in Google Scholar

Received: 2022-12-06
Published Online: 2023-03-29
Published in Print: 2024-01-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0368/html
Button zum nach oben scrollen