Abstract
We study and relate categories of modules, comodules and contramodules over a representation of a small category taking values in (co)algebras, in a manner similar to modules over a ringed space. As a result, we obtain a categorical framework which incorporates all adjoint functors between these categories in a natural manner. Various classical properties of coalgebras and their morphisms arise naturally within this theory. We also consider cartesian objects in each of these categories, which may be viewed as counterparts of quasi-coherent sheaves over a scheme. We study their categorical properties using cardinality arguments. Our focus is on generators for these categories and on Grothendieck categories, because the latter may be treated as replacements for noncommutative spaces.
Funding source: Science and Engineering Research Board
Award Identifier / Grant number: MTR/2017/000112
Award Identifier / Grant number: PDF/2020/000670
Funding statement: A. Banerjee was partially supported by SERB Matrics fellowship MTR/2017/000112. S. Ray was partially supported by SERB National Postdoctoral Fellowship PDF/2020/000670.
Acknowledgements
The authors are grateful to L. Positselski for a useful discussion.
References
[1] J. Y. Abuhlail, J. Gómez-Torrecillas and F. J. Lobillo, Duality and rational modules in Hopf algebras over commutative rings, J. Algebra 240 (2001), no. 1, 165–184. 10.1006/jabr.2001.8722Suche in Google Scholar
[2] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Math. Soc. Lecture Note Ser. 189, Cambridge University, Cambridge, 1994. Suche in Google Scholar
[3] K. Al-Takhman, Equivalences of comodule categories for coalgebras over rings, J. Pure Appl. Algebra 173 (2002), no. 3, 245–271. 10.1016/S0022-4049(02)00013-0Suche in Google Scholar
[4] M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift. Vol. I, Progr. Math. 86, Birkhäuser Boston, Boston (1990), 33–85. 10.1007/978-0-8176-4574-8_3Suche in Google Scholar
[5] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. 10.1006/aima.1994.1087Suche in Google Scholar
[6] A. Banerjee, Entwined modules over representations of categories, Algebr. Represent. Theory (2023), 10.1007/s10468–023–10203–3. 10.1007/s10468–023–10203–3Suche in Google Scholar
[7] S. Bazzoni and L. Positselski, Matlis category equivalences for a ring epimorphism, J. Pure Appl. Algebra 224 (2020), no. 10, Article ID 106398. 10.1016/j.jpaa.2020.106398Suche in Google Scholar
[8] S. Bazzoni, L. Positselski and J. Šťovíček, Projective covers of flat contramodules, Int. Math. Res. Not. IMRN 2022 (2022), no. 24, 19527–19564. 10.1093/imrn/rnab202Suche in Google Scholar
[9] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 883 (2007), 1–207. 10.1090/memo/0883Suche in Google Scholar
[10] G. Böhm, T. Brzeziński and R. Wisbauer, Monads and comonads on module categories, J. Algebra 322 (2009), no. 5, 1719–1747. 10.1016/j.jalgebra.2009.06.003Suche in Google Scholar
[11] T. Brzezinski and R. Wisbauer, Corings and Comodules, London Math. Soc. Lecture Note Ser. 309, Cambridge University, Cambridge, 2003. 10.1017/CBO9780511546495Suche in Google Scholar
[12] S. Dăscălescu, C. Năstăsescu and Ş. Raianu, Hopf Algebras, Monogr. Textb. Pure Appl. Math. 235, Marcel Dekker, New York, 2001. Suche in Google Scholar
[13] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, Boston (1990), 111–195. 10.1007/978-0-8176-4575-5_3Suche in Google Scholar
[14] Z. Di, S. Estrada, L. Liang and S. Odabaşı, Gorenstein flat representations of left rooted quivers, J. Algebra 584 (2021), 180–214. 10.1016/j.jalgebra.2021.05.008Suche in Google Scholar
[15] S. Eilenberg and J. C. Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc. 55 (1965), 1–39. 10.1090/memo/0055Suche in Google Scholar
[16] E. Enochs and S. Estrada, Projective representations of quivers, Comm. Algebra 33 (2005), no. 10, 3467–3478. 10.1081/AGB-200058181Suche in Google Scholar
[17] E. Enochs, S. Estrada and J. R. García Rozas, Injective representations of infinite quivers. Applications, Canad. J. Math. 61 (2009), no. 2, 315–335. 10.4153/CJM-2009-016-2Suche in Google Scholar
[18] S. Estrada and S. Virili, Cartesian modules over representations of small categories, Adv. Math. 310 (2017), 557–609. 10.1016/j.aim.2017.01.030Suche in Google Scholar
[19] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448. 10.24033/bsmf.1583Suche in Google Scholar
[20] A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221. 10.2748/tmj/1178244839Suche in Google Scholar
[21] L. Illusie, Existence de résolutions globales. Théorie des intersections et théorème de Riemann–Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Lecture Notes in Math. 225, Springer, Berlin (1971), 160–221. 10.1007/BFb0066286Suche in Google Scholar
[22] M. Kashiwara and P. Schapira, Categories and Sheaves, Grundlehren Math. Wiss. 332, Springer, Berlin, 2006. 10.1007/3-540-27950-4Suche in Google Scholar
[23] B. Lin, Semiperfect coalgebras, J. Algebra 49 (1977), no. 2, 357–373. 10.1016/0021-8693(77)90246-0Suche in Google Scholar
[24] W. Lowen, A generalization of the Gabriel–Popescu theorem, J. Pure Appl. Algebra 190 (2004), no. 1–3, 197–211. 10.1016/j.jpaa.2003.11.016Suche in Google Scholar
[25] W. Lowen, J. Ramos González and B. Shoikhet, On the tensor product of linear sites and Grothendieck categories, Int. Math. Res. Not. IMRN 2018 (2018), no. 21, 6698–6736. 10.1093/imrn/rnx072Suche in Google Scholar
[26] J. Lurie, Derived Algebraic Geometry, ProQuest LLC, Ann Arbor, 2004; Ph.D. thesis, Massachusetts Institute of Technology. Suche in Google Scholar
[27] B. Mitchell, Rings with several objects, Adv. Math. 8 (1972), 1–161. 10.1016/0001-8708(72)90002-3Suche in Google Scholar
[28] C. Năstăsescu and B. Torrecillas, Torsion theory for coalgebras, J. Pure Appl. Algebra 97 (1994), 203–220. 10.1016/0022-4049(94)00009-3Suche in Google Scholar
[29] L. Positselski, Homological Algebra of Semimodules and Semicontramodules: Semi-Infinite Homological Algebra of Associative Algebraic Structures, Springer, Basel, 2010. 10.1007/978-3-0346-0436-9Suche in Google Scholar
[30] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc. 996 (2011), 1–133. 10.1090/S0065-9266-2010-00631-8Suche in Google Scholar
[31] L. Positselski, Contraadjusted modules, contramodules, and reduced cotorsion modules, Mosc. Math. J. 17 (2017), no. 3, 385–455. 10.17323/1609-4514-2017-17-3-385-455Suche in Google Scholar
[32] L. Positselski, Contramodules, preprint (2019), https://arxiv.org/abs/1503.00991. Suche in Google Scholar
[33] L. Positselski, Smooth duality and co-contra correspondence, J. Lie Theory 30 (2020), no. 1, 85–144. Suche in Google Scholar
[34] L. Positselski, Contramodules over pro-perfect topological rings, Forum Math. 34 (2022), no. 1, 1–39. 10.1515/forum-2021-0010Suche in Google Scholar
[35] L. Positselski and J. Rosický, Covers, envelopes, and cotorsion theories in locally presentable abelian categories and contramodule categories, J. Algebra 483 (2017), 83–128. 10.1016/j.jalgebra.2017.03.029Suche in Google Scholar
[36] D. E. Radford, Coreflexive coalgebras, J. Algebra 26 (1973), 512–535. 10.1016/0021-8693(73)90012-4Suche in Google Scholar
[37] A. L. Rosenberg, Reconstruction of schemes, MPI Preprints Series 108, Max-Planck-Institut für Mathematik, 1996. Suche in Google Scholar
[38] A. L. Rosenberg, The spectrum of abelian categories and reconstruction of schemes, Rings, Hopf algebras, and Brauer groups, Lecture Notes Pure Appl. Math. 197, Dekker, New York (1998), 257–274. 10.1201/9781003071730-18Suche in Google Scholar
[39] A. L. Rosenberg, Spectra of “spaces” represented by abelian categories, MPI Preprints Series 115, Max-Planck-Institut für Mathematik, 2004. Suche in Google Scholar
[40] I. Shapiro, Mixed vs stable anti-Yetter–Drinfeld contramodules, SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021), Paper No. 026. 10.3842/SIGMA.2021.026Suche in Google Scholar
[41] J. T. Stafford and M. van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. (N. S.) 38 (2001), no. 2, 171–216. 10.1090/S0273-0979-01-00894-1Suche in Google Scholar
[42] M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 629–644. Suche in Google Scholar
[43]
B. Toën and M. Vaquié,
Au-dessous de
[44] B. Toën and G. Vezzosi, Homotopical algebraic geometry. I. Topos theory, Adv. Math. 193 (2005), no. 2, 257–372. 10.1016/j.aim.2004.05.004Suche in Google Scholar
[45] B. Toën and G. Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 902 (2008), 1–224. 10.1090/memo/0902Suche in Google Scholar
[46] R. Wisbauer, Comodules and contramodules, Glasg. Math. J. 52 (2010), 151–162. 10.1017/S0017089510000194Suche in Google Scholar
[47] The stacks project, available online from stacks.math.columbia.edu. Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- On Mukhin’s necessary and sufficient condition for the validity of the local limit theorem
- Non-commutative Khinchine-type inequality for dependent random variables and overview of its applications in data science
- Connections and genuinely ramified maps of curves
- Caustics of pseudo-spherical surfaces in the Euclidean 3-space
- On liftings of modular forms and Weil representations
- Approximation via statistical measurable convergence with respect to power series for double sequences
- Global existence, scattering, rigidity and inverse scattering for some quasilinear hyperbolic systems
- Gem-induced trisections of compact PL 4-manifolds
- Categories of modules, comodules and contramodules over representations
- On the Iwasawa invariants of BDP Selmer groups and BDP p-adic L-functions
- On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms
- Congruence subgroups and crystallographic quotients of small Coxeter groups
- Some Betti numbers of the moduli of 1-dimensional sheaves on ℙ2
- Hardy and BMO spaces on Weyl chambers
- De Branges–Rovnyak spaces and local Dirichlet spaces of higher order
Artikel in diesem Heft
- Frontmatter
- On Mukhin’s necessary and sufficient condition for the validity of the local limit theorem
- Non-commutative Khinchine-type inequality for dependent random variables and overview of its applications in data science
- Connections and genuinely ramified maps of curves
- Caustics of pseudo-spherical surfaces in the Euclidean 3-space
- On liftings of modular forms and Weil representations
- Approximation via statistical measurable convergence with respect to power series for double sequences
- Global existence, scattering, rigidity and inverse scattering for some quasilinear hyperbolic systems
- Gem-induced trisections of compact PL 4-manifolds
- Categories of modules, comodules and contramodules over representations
- On the Iwasawa invariants of BDP Selmer groups and BDP p-adic L-functions
- On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms
- Congruence subgroups and crystallographic quotients of small Coxeter groups
- Some Betti numbers of the moduli of 1-dimensional sheaves on ℙ2
- Hardy and BMO spaces on Weyl chambers
- De Branges–Rovnyak spaces and local Dirichlet spaces of higher order