Home Non-commutative Khinchine-type inequality for dependent random variables and overview of its applications in data science
Article
Licensed
Unlicensed Requires Authentication

Non-commutative Khinchine-type inequality for dependent random variables and overview of its applications in data science

  • Susanna Spektor ORCID logo EMAIL logo
Published/Copyright: February 28, 2023

Abstract

We obtained a non-commutative Khinchine-type inequality under assumption that Rademacher random variables are dependent under condition that the sum of them is equal to some integer M.

MSC 2010: 46L52; 47L25

Communicated by Maria Gordina


References

[1] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer, New York, 1997. 10.1007/978-1-4612-0653-8Search in Google Scholar

[2] A. Buchholz, Operator Khintchine inequality in non-commutative probability, Math. Ann. 319 (2001), no. 1, 1–16. 10.1007/PL00004425Search in Google Scholar

[3] K. Burak and A. B. Kashlak, Nonparametric confidence regions via the analytic wild bootstrap, Canad. J. Statist. 51 (2023), 77–94. 10.1002/cjs.11687Search in Google Scholar

[4] S. Dirksen and E. Ricard, Some remarks on noncommutative Khintchine inequalities, Bull. Lond. Math. Soc. 45 (2013), no. 3, 618–624. 10.1112/blms/bds107Search in Google Scholar

[5] U. Haagerup and M. Musat, On the best constants in noncommutative Khintchine-type inequalities, J. Funct. Anal. 250 (2007), no. 2, 588–624. 10.1016/j.jfa.2007.05.014Search in Google Scholar

[6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University, Cambridge, 1990. Search in Google Scholar

[7] A. B. Kashlak, Large scale permutation A/B testing for quantile differences, preprint (2022). Search in Google Scholar

[8] A. B. Kashlak, S. Myroshnychenko and S. Spektor, Analytic permutation testing for functional data ANOVA, J. Comput. Graph. Statist. (2022), 10.1080/10618600.2022.2069780. 10.1080/10618600.2022.2069780Search in Google Scholar

[9] A. B. Kashlak and W. Yuan, Computation-free nonparametric testing for local spatial association with application to the US and Canadian electorate, Spat. Stat. 48 (2022), Paper No. 100617. 10.1016/j.spasta.2022.100617Search in Google Scholar

[10] F. Lust-Piquard, Inégalités de Khintchine dans C p ( 1 < p < ), C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 7, 289–292. Search in Google Scholar

[11] F. Lust-Piquard and G. Pisier, Noncommutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), no. 2, 241–260. 10.1007/BF02384340Search in Google Scholar

[12] G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Note Ser. 294, Cambridge University, Cambridge, 2003. 10.1017/CBO9781107360235Search in Google Scholar

[13] G. Pisier and E. Ricard, The non-commutative Khintchine inequalities for 0 < p < 1 , J. Inst. Math. Jussieu 16 (2017), no. 5, 1103–1123. 10.1017/S1474748015000353Search in Google Scholar

[14] G. Pisier and Q. Xu, Non-commutative L p -spaces, Handbook of the Geometry of Banach Spaces. Vol. 2, North-Holland, Amsterdam (2003), 1459–1517. 10.1016/S1874-5849(03)80041-4Search in Google Scholar

[15] S. Spektor, Restricted Khinchine inequality, Canad. Math. Bull. 59 (2016), no. 1, 204–210. 10.4153/CMB-2015-047-8Search in Google Scholar

[16] J. A. Tropp, On the conditioning of random subdictionaries, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 1–24. 10.1016/j.acha.2007.09.001Search in Google Scholar

Received: 2021-12-17
Published Online: 2023-02-28
Published in Print: 2024-01-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0339/html
Scroll to top button