Startseite Mathematik Non-vanishing of Maass form 𝐿-functions of cubic level at the central point
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-vanishing of Maass form 𝐿-functions of cubic level at the central point

  • Hui Wang ORCID logo und Xin Wang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. Februar 2025

Abstract

With the method of mollification and the simple Kuznetsov trace formula, we study the central 𝐿-values of GL 2 Maass forms of cubic level and establish a positive-proportional non-vanishing result in the spectral aspect in short intervals.

MSC 2020: 11F12; 11F30; 11F67

Award Identifier / Grant number: 2021YFA1000700

Funding statement: This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1000700).

Acknowledgements

The authors would like to thank Professors Jianya Liu and Xiumin Ren for their help and encouragement. We gratefully acknowledge the many helpful suggestions of Professors Bingrong Huang, Yongxiao Lin, Qinghua Pi, Zhi Qi and Yingnan Wang during the preparation of the paper. We also thank PhD Shilun Wang for some useful advice. Thanks also go to the referees for corrections and very helpful comments.

  1. Communicated by: Guozhen Lu

References

[1] O. Balkanova and D. Frolenkov, Non-vanishing of automorphic 𝐿-functions of prime power level, Monatsh. Math. 185 (2018), no. 1, 17–41. 10.1007/s00605-017-1031-4Suche in Google Scholar

[2] O. Balkanova, B. Huang and A. Södergren, Non-vanishing of Maass form 𝐿-functions at the central point, Proc. Amer. Math. Soc. 149 (2021), no. 2, 509–523. 10.1090/proc/15208Suche in Google Scholar

[3] V. Blomer, R. Khan and M. Young, Distribution of mass of holomorphic cusp forms, Duke Math. J. 162 (2013), no. 14, 2609–2644. 10.1215/00127094-2380967Suche in Google Scholar

[4] W. Duke, The critical order of vanishing of automorphic 𝐿-functions with large level, Invent. Math. 119 (1995), no. 1, 165–174. 10.1007/BF01245178Suche in Google Scholar

[5] S. Gelbart, Lectures on the Arthur–Selberg Trace Formula, Univ. Lecture Ser. 9, American Mathematical Society, Providence 1996. 10.1090/ulect/009Suche in Google Scholar

[6] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Elsevier/Academic, Amsterdam, 2007. Suche in Google Scholar

[7] B. H. Gross and M. Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), no. 3, 431–508. 10.1215/00127094-2010-043Suche in Google Scholar

[8] D. A. Hejhal, The Selberg Trace Formula for PSL ( 2 , R ) . Vol. 2, Lecture Notes in Math. 1001, Springer, Berlin, 1983. 10.1007/BFb0061302Suche in Google Scholar

[9] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar

[10] H. Iwaniec and P. Sarnak, The non-vanishing of central values of automorphic 𝐿-functions and Landau–Siegel zeros, Israel J. Math. 120 (2000), 155–177. 10.1007/s11856-000-1275-9Suche in Google Scholar

[11] H. H. Kim, Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. Suche in Google Scholar

[12] A. Knightly and C. Li, Simple supercuspidal representations of GL ( n ) , Taiwanese J. Math. 19 (2015), no. 4, 995–1029. 10.11650/tjm.19.2015.3853Suche in Google Scholar

[13] E. Kowalski and P. Michel, The analytic rank of J 0 ( q ) and zeros of automorphic 𝐿-functions, Duke Math. J. 100 (1999), no. 3, 503–542. 10.1215/S0012-7094-99-10017-2Suche in Google Scholar

[14] E. Kowalski and P. Michel, A lower bound for the rank of J 0 ( q ) , Acta Arith. 94 (2000), no. 4, 303–343. 10.4064/aa-94-4-303-343Suche in Google Scholar

[15] E. Kowalski, P. Michel and J. VanderKam, Rankin–Selberg 𝐿-functions in the level aspect, Duke Math. J. 114 (2002), no. 1, 123–191. 10.1215/S0012-7094-02-11416-1Suche in Google Scholar

[16] X. Li, Bounds for GL ( 3 ) × GL ( 2 ) 𝐿-functions and GL ( 3 ) 𝐿-functions, Ann. of Math. (2) 173 (2011), no. 1, 301–336. Suche in Google Scholar

[17] S. Liu, Nonvanishing of central 𝐿-values of Maass forms, Adv. Math. 332 (2018), 403–437. 10.1016/j.aim.2018.05.017Suche in Google Scholar

[18] S.-C. Liu and Z. Qi, Moments of central 𝐿-values for Maass forms over imaginary quadratic fields, Trans. Amer. Math. Soc. 375 (2022), no. 5, 3381–3410. 10.1090/tran/8588Suche in Google Scholar

[19] W. Luo, Nonvanishing of 𝐿-values and the Weyl law, Ann. of Math. (2) 154 (2001), no. 2, 477–502. 10.2307/3062104Suche in Google Scholar

[20] W. Luo, Nonvanishing of the central 𝐿-values with large weight, Adv. Math. 285 (2015), 220–234. 10.1016/j.aim.2015.08.009Suche in Google Scholar

[21] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren Math. Wiss. 52, Springer, New York, 1966. 10.1007/978-3-662-11761-3Suche in Google Scholar

[22] F. W. J. Olver, Asymptotics and Special Functions, Comput. Sci. Appl. Math., Academic Press, New York, 1997. 10.1201/9781439864548Suche in Google Scholar

[23] Q. Pi, Y. Wang and L. Zhang, Simple Fourier trace formulas of cubic level and applications, preprint (2020), https://arxiv.org/abs/1906.06103v4. Suche in Google Scholar

[24] Z. Qi, Proof of the strong Ivić conjecture for the cubic moment of Maass-form 𝐿-functions, Int. Math. Res. Not. IMRN 2023 (2023), no. 22, 19205–19236. 10.1093/imrn/rnad090Suche in Google Scholar

[25] D. Rouymi, Mollification et non annulation de fonctions 𝐿 automorphes en niveau primaire, J. Number Theory 132 (2012), no. 1, 79–93. 10.1016/j.jnt.2011.06.006Suche in Google Scholar

[26] E. Royer, Sur les fonctions L de formes modulaires, Ph.D. Thesis, Université de Paris-Sud, 2001. 10.4064/aa99-2-3Suche in Google Scholar

[27] A. Selberg, Collected Papers. Vol. I, Springer, Berlin, 1989. Suche in Google Scholar

[28] P. Shiu, A Brun–Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161–170. 10.1515/crll.1980.313.161Suche in Google Scholar

[29] K. Soundararajan, Nonvanishing of quadratic Dirichlet 𝐿-functions at s = 1 2 , Ann. of Math. (2) 152 (2000), no. 2, 447–488. 10.2307/2661390Suche in Google Scholar

[30] H. Tang and Z. Xu, Central value of the symmetric square 𝐿-functions related to Hecke–Maass forms, Lith. Math. J. 56 (2016), no. 2, 251–267. 10.1007/s10986-016-9317-0Suche in Google Scholar

[31] J. M. VanderKam, The rank of quotients of J 0 ( N ) , Duke Math. J. 97 (1999), no. 3, 545–577. 10.1215/S0012-7094-99-09721-1Suche in Google Scholar

Received: 2022-12-03
Revised: 2024-07-12
Published Online: 2025-02-27
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0362/pdf
Button zum nach oben scrollen