Startseite Mathematik A dual version of Huppert's ρ-σ conjecture for character codegrees
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A dual version of Huppert's ρ-σ conjecture for character codegrees

  • Alexander Moretó ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Januar 2022

Abstract

We classify the finite groups with the property that any two different character codegrees are coprime. In general, we conjecture that if k is a positive integer such that for any prime p the number of character codegrees of a finite group G that are divisible by p is at most k, then the number of prime divisors of |G| is bounded in terms of k. We prove this conjecture for solvable groups.

MSC 2010: 20C15

Communicated by Freydoon Shahidi


Award Identifier / Grant number: PID2019-103854GB-I00

Funding source: Generalitat Valenciana

Award Identifier / Grant number: AICO/2020/298

Funding statement: Research supported by Ministerio de Ciencia e Innovación (Grant PID2019-103854GB-I00 funded by MCIN/AEI/10.13039/501100011033) and Generalitat Valenciana AICO/2020/298.

Acknowledgements

I thank the referee for his/her careful reading of the paper and helpful comments.

References

[1] N. Ahanjideh, The fitting subgroup, p-length, derived length and character table, Math. Nachr. 294 (2021), no. 2, 214–223. 10.1002/mana.202000057Suche in Google Scholar

[2] Z. Akhlaghi, S. Dolfi and E. Pacifici, On Huppert’s rho-sigma conjecture, J. Algebra 586 (2021), 537–560. 10.1016/j.jalgebra.2021.06.038Suche in Google Scholar

[3] F. Alizadeh, H. Behravesh, M. Ghaffarzadeh, M. Ghasemi and S. Hekmatara, Groups with few codegrees of irreducible characters, Comm. Algebra 47 (2019), no. 3, 1147–1152. 10.1080/00927872.2018.1501572Suche in Google Scholar

[4] D. Benjamin, Coprimeness among irreducible character degrees of finite solvable groups, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2831–2837. 10.1090/S0002-9939-97-04269-XSuche in Google Scholar

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985. Suche in Google Scholar

[6] N. Du and M. L. Lewis, Codegrees and nilpotence class of p-groups, J. Group Theory 19 (2016), no. 4, 561–567. 10.1515/jgth-2015-0039Suche in Google Scholar

[7] I. M. Isaacs, Character Theory of Finite Groups, AMS Chelsea, Providence, 2006. 10.1090/chel/359Suche in Google Scholar

[8] T. M. Keller, Orbit sizes and character degrees. III, J. Reine Angew. Math. 545 (2002), 1–17. 10.1515/crll.2002.035Suche in Google Scholar

[9] G. Malle and A. Moretó, A dual version of Huppert’s ρ-σ conjecture, Int. Math. Res. Not. IMRN 2007 (2007), no. 22, Article ID rnm 104. Suche in Google Scholar

[10] O. Manz and T. R. Wolf, Representations of Solvable Groups, London Math. Soc. Lecture Note Ser. 185, Cambridge University, Cambridge, 1993. 10.1017/CBO9780511525971Suche in Google Scholar

[11] S. Mattarei, On character tables of wreath products, J. Algebra 175 (1995), no. 1, 157–178. 10.1006/jabr.1995.1180Suche in Google Scholar

[12] A. Moretó, Character degrees, character codegrees and nilpotence class of p-groups, Comm. Algebra (2021), 10.1080/00927872.2021.1970758. 10.1080/00927872.2021.1970758Suche in Google Scholar

[13] A. Moretó, Huppert’s conjecture for character codegrees, Math. Nachr. 294 (2021), no. 11, 2232–2236. 10.1002/mana.202000568Suche in Google Scholar

[14] G. Qian, Y. Wang and H. Wei, Co-degrees of irreducible characters in finite groups, J. Algebra 312 (2007), no. 2, 946–955. 10.1016/j.jalgebra.2006.11.001Suche in Google Scholar

[15] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487–513. 10.1090/pspum/037/604579Suche in Google Scholar

[16] Y. Yang and G. Qian, The analog of Huppert’s conjecture on character codegrees, J. Algebra 478 (2017), 215–219. 10.1016/j.jalgebra.2016.12.017Suche in Google Scholar

Received: 2021-10-05
Revised: 2021-12-09
Published Online: 2022-01-23
Published in Print: 2022-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0257/pdf
Button zum nach oben scrollen