Home A converse theorem for quasimodular forms
Article
Licensed
Unlicensed Requires Authentication

A converse theorem for quasimodular forms

  • Mrityunjoy Charan , Jaban Meher , Karam Deo Shankhadhar EMAIL logo and Ranveer Kumar Singh
Published/Copyright: March 1, 2022

Abstract

In this paper, we consider twisted Dirichlet series attached to quasimodular forms, study their analytic properties, and prove an analogue of Weil’s converse theorem for quasimodular forms over congruence subgroups. We also give some applications of our results to a certain q-series and sign changes of the Fourier coefficients of quasimodular forms.


Communicated by Jan Bruinier


Award Identifier / Grant number: CRG/2020/004147

Funding statement: The research of the second author was partially supported by the DST-SERB, grant number CRG/2020/004147.

Acknowledgements

We would like to thank the referee for his careful reading and some useful comments which improved the presentation of the article.

References

[1] A. Bhand and K. D. Shankhadhar, On Dirichlet series attached to quasimodular forms, J. Number Theory 202 (2019), 91–106. 10.1016/j.jnt.2019.01.016Search in Google Scholar

[2] J. W. Cogdell and I. I. Piatetski-Shapiro, Converse theorems for GLn, Publ. Math. Inst. Hautes Études Sci. 79 (1994), 157–214. 10.1007/BF02698889Search in Google Scholar

[3] H. Cohen and F. Strömberg, Modular Forms: A Classical Approach, Grad. Stud. Math. 179, American Mathematical Society, Providence, 2017. 10.1090/gsm/179Search in Google Scholar

[4] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), no. 1, 664–699. 10.1007/BF01565437Search in Google Scholar

[5] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin, 1970. 10.1007/BFb0058988Search in Google Scholar

[6] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Automorphic forms on GL(3). I, Ann. of Math. (2) 109 (1979), no. 1, 169–212. 10.2307/1971270Search in Google Scholar

[7] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, The Moduli Space of Curves (Texel Island 1994), Progr. Math. 129, Birkhäuser, Boston (1995), 165–172. 10.1007/978-1-4612-4264-2_6Search in Google Scholar

[8] D. Lagos, Hacia un teorema converso para formas cuasimodulares sobre SL2(), M.Sc. thesis (under Prof. Yves Martin), Universidad de Chile. Search in Google Scholar

[9] T. Miyake, Modular Forms, Springer Monogr. Math., Springer, Berlin, 1976. Search in Google Scholar

[10] W. Pribitkin, On the sign changes of coefficients of general Dirichlet series, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3089–3094. 10.1090/S0002-9939-08-09296-4Search in Google Scholar

[11] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), no. 9, 159–184. Search in Google Scholar

[12] E. Royer, Quasimodular forms: An introduction, Ann. Math. Blaise Pascal 19 (2012), no. 2, 297–306. 10.5802/ambp.315Search in Google Scholar

[13] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156. 10.1007/978-1-4757-1705-1_100Search in Google Scholar

[14] S. Zemel, On quasi-modular forms, almost holomorphic modular forms, and the vector-valued modular forms of Shimura, Ramanujan J. 37 (2015), no. 1, 165–180. 10.1007/s11139-014-9602-7Search in Google Scholar

Received: 2021-09-16
Revised: 2022-01-12
Published Online: 2022-03-01
Published in Print: 2022-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0241/html
Scroll to top button