Home Holomorphic convexity of pseudoconvex spaces in terms of the rank of structural sheaf
Article
Licensed
Unlicensed Requires Authentication

Holomorphic convexity of pseudoconvex spaces in terms of the rank of structural sheaf

  • Viorel Vîjîitu EMAIL logo
Published/Copyright: March 1, 2022

Abstract

We prove that a pseudoconvex complex space X of pure dimension n+1 is holomorphically convex provided that its singular set has only compact connected components (e.g., X has isolated singularities) and rankx𝒪X=n for all smooth points x outside a compact set of X. This extends a known result due to Ohsawa asserting that a weakly 1-complete, smooth complex surface is holomorphically convex if it admits a globally defined non-constant holomorphic function. We also revise an example of Markoe concerning non-invariance of holomorphic convexity under normalization.


Communicated by Shigeharu Takayama


References

[1] W. A. Adkins, A. Andreotti and J. V. Leahy, An analogue of Oka’s theorem for weakly normal complex spaces, Pacific J. Math. 68 (1977), no. 2, 297–301. 10.2140/pjm.1977.68.297Search in Google Scholar

[2] A. Andreotti and H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259. 10.24033/bsmf.1581Search in Google Scholar

[3] A. Andreotti and W. Stoll, Analytic and Algebraic Dependence of Meromorphic Functions, Lecture Notes in Math. 234, Springer, Berlin, 1971. 10.1007/BFb0058595Search in Google Scholar

[4] A. Borel and R. Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247–255. 10.1007/BF01425403Search in Google Scholar

[5] J. Brun, Sur le problème de Levi dans certains fibres, Manuscripta Math. 14 (1974), 217–222. 10.1007/BF01171407Search in Google Scholar

[6] J.-P. Demailly, Construction d’hypersurfaces irréductibles avec lieu singulier donné dans 𝐂n, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 3, 219–236. 10.5802/aif.799Search in Google Scholar

[7] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, Berlin, 1976. 10.1007/BFb0080338Search in Google Scholar

[8] B. Gilligan and A. Huckleberry, Remarks on k-Leviflat complex manifolds, Canad. J. Math. 31 (1979), no. 4, 881–889. 10.4153/CJM-1979-083-1Search in Google Scholar

[9] H. Grauert, Charakterisierung der holomorph vollständigen komplexen Räume, Math. Ann. 129 (1955), 233–259. 10.1007/BF01362369Search in Google Scholar

[10] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. Search in Google Scholar

[11] A. Hirschowitz, Pseudoconvexité au-dessus d’espaces plus ou moins homogènes, Invent. Math. 26 (1974), 303–322. 10.1007/BF01425555Search in Google Scholar

[12] A. T. Huckleberry, The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann. 219 (1976), no. 2, 127–137. 10.1007/BF01351896Search in Google Scholar

[13] L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, De Gruyter Stud. Math. 3, Walter de Gruyter, Berlin, 1983. 10.1515/9783110838350Search in Google Scholar

[14] K. Knorr and M. Schneider, Relativexzeptionelle analytische Mengen, Math. Ann. 193 (1971), 238–254. 10.1007/BF02052395Search in Google Scholar

[15] A. Markoe, Invariance of holomorphic convexity under proper mappings, Math. Ann. 217 (1975), no. 3, 267–270. 10.1007/BF01436179Search in Google Scholar

[16] R. Narasimhan, The Levi problem for complex spaces, Math. Ann. 142 (1960/61), 355–365. 10.1007/BF01451029Search in Google Scholar

[17] R. Narasimhan, The Levi problem in the theory of functions of several complex variables, Proceedings of the International Congress of Mathematicians (Stockholm 1962), Institut Mittag-Leffler, Djursholm (1963), 385–388. Search in Google Scholar

[18] T. Ohsawa, Weakly 1-complete manifold and Levi problem, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 153–164. 10.2977/prims/1195186709Search in Google Scholar

[19] R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370. 10.1007/BF01342886Search in Google Scholar

[20] R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286. 10.1007/BF02063212Search in Google Scholar

[21] B. Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968), 111–120. 10.1307/mmj/1028999912Search in Google Scholar

[22] Y.-T. Siu, The 1-convex generalization of Grauert’s direct image theorem, Math. Ann. 190 (1970/71), 203–214. 10.1007/BF01433210Search in Google Scholar

[23] Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976/77), no. 1, 89–100. 10.1007/BF01390170Search in Google Scholar

[24] G. Tomassini and V. Vâjâitu, Weakly 1-complete surfaces with singularities and applications, Michigan Math. J. 56 (2008), no. 3, 483–494. 10.1307/mmj/1231770355Search in Google Scholar

[25] V. Vâjâitu, Holomorphic q-hulls in top degrees, Manuscripta Math. 91 (1996), no. 2, 195–210. 10.1007/BF02567949Search in Google Scholar

[26] V. Vâjâitu, Stein spaces with plurisubharmonic bounded exhaustion functions, Math. Ann. 336 (2006), no. 3, 539–550. 10.1007/s00208-006-0770-7Search in Google Scholar

[27] V. Vîjîitu, A Radó theorem for complex spaces, Canad. Math. Bull. (2021), 10.4153/S0008439521000424. 10.4153/S0008439521000424Search in Google Scholar

[28] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, 1972. Search in Google Scholar

Received: 2021-10-10
Revised: 2021-12-11
Published Online: 2022-03-01
Published in Print: 2022-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0262/html
Scroll to top button