Home On length densities
Article
Licensed
Unlicensed Requires Authentication

On length densities

  • Scott T. Chapman ORCID logo EMAIL logo , Christopher O’Neill ORCID logo and Vadim Ponomarenko ORCID logo
Published/Copyright: December 1, 2021

Abstract

For a commutative cancellative monoid M, we introduce the notion of the length density of both a nonunit xM, denoted LD(x), and the entire monoid M, denoted LD(M). This invariant is related to three widely studied invariants in the theory of nonunit factorizations, L(x), (x), and ρ(x). We consider some general properties of LD(x) and LD(M) and give a wide variety of examples using numerical semigroups, Puiseux monoids, and Krull monoids. While we give an example of a monoid M with irrational length density, we show that if M is finitely generated, then LD(M) is rational and there is a nonunit element xM with LD(M)=LD(x) (such a monoid is said to have accepted length density). While it is well known that the much studied asymptotic versions of L(x), (x), and ρ(x) (denoted L¯(x), ¯(x), and ρ¯(x)) always exist, we show the somewhat surprising result that LD¯(x)=limnLD(xn) may not exist. We also give some finiteness conditions on M that force the existence of LD¯(x).

MSC 2010: 13F15; 20M14; 11R27

Communicated by Manfred Droste


Acknowledgements

The authors wish to thank the referee for many comments and suggestions that greatly improved our paper.

References

[1] D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy, V. Ponomarenko and R. Rosenbaum, Bifurcus semigroups and rings, Involve 2 (2009), no. 3, 351–356. 10.2140/involve.2009.2.351Search in Google Scholar

[2] D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra 80 (1992), no. 3, 217–235. 10.1016/0022-4049(92)90144-5Search in Google Scholar

[3] D. D. Anderson, D. F. Anderson, S. T. Chapman and W. W. Smith, Rational elasticity of factorizations in Krull domains, Proc. Amer. Math. Soc. 117 (1993), no. 1, 37–43. 10.1090/S0002-9939-1993-1106176-1Search in Google Scholar

[4] D. D. Anderson and J. L. Mott, Cohen–Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra 148 (1992), no. 1, 17–41. 10.1016/0021-8693(92)90234-DSearch in Google Scholar

[5] D. F. Anderson, S. T. Chapman and W. W. Smith, On Krull half-factorial domains with infinite cyclic divisor class group, Houston J. Math. 20 (1994), no. 4, 561–570. Search in Google Scholar

[6] D. F. Anderson and P. Pruis, Length functions on integral domains, Proc. Amer. Math. Soc. 113 (1991), no. 4, 933–937. 10.1090/S0002-9939-1991-1057742-1Search in Google Scholar

[7] N. Baeth, V. Ponomarenko, D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy and R. Rosenbaum, Number theory of matrix semigroups, Linear Algebra Appl. 434 (2011), no. 3, 694–711. 10.1016/j.laa.2010.09.028Search in Google Scholar

[8] P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer and Y. She, On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra 214 (2010), no. 8, 1334–1339. 10.1016/j.jpaa.2009.10.015Search in Google Scholar

[9] P. Baginski, S. T. Chapman and G. J. Schaeffer, On the delta set of a singular arithmetical congruence monoid, J. Théor. Nombres Bordeaux 20 (2008), no. 1, 45–59. 10.5802/jtnb.615Search in Google Scholar

[10] M. Banister, J. Chaika, S. T. Chapman and W. Meyerson, On the arithmetic of arithmetical congruence monoids, Colloq. Math. 108 (2007), no. 1, 105–118. 10.4064/cm108-1-9Search in Google Scholar

[11] M. Banister, J. Chaika, S. T. Chapman and W. Meyerson, A theorem on accepted elasticity in certain local arithmetical congruence monoids, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 1, 79–86. 10.1007/s12188-008-0012-xSearch in Google Scholar

[12] T. Barron, C. O’Neill and R. Pelayo, On the set of elasticities in numerical monoids, Semigroup Forum 94 (2017), no. 1, 37–50. 10.1007/s00233-015-9740-2Search in Google Scholar

[13] V. Blanco, P. A. García-Sánchez and A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math. 55 (2011), no. 4, 1385–1414. 10.1215/ijm/1373636689Search in Google Scholar

[14] C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006), no. 5, 695–718. 10.1142/S0219498806001958Search in Google Scholar

[15] S. T. Chapman, F. Gotti and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020), no. 1, 380–396. 10.1080/00927872.2019.1646269Search in Google Scholar

[16] S. T. Chapman, F. Gotti and R. Pelayo, On delta sets and their realizable subsets in Krull monoids with cyclic class groups, Colloq. Math. 137 (2014), no. 1, 137–146. 10.4064/cm137-1-10Search in Google Scholar

[17] S. T. Chapman, M. T. Holden and T. A. Moore, Full elasticity in atomic monoids and integral domains, Rocky Mountain J. Math. 36 (2006), no. 5, 1437–1455. 10.1216/rmjm/1181069375Search in Google Scholar

[18] S. T. Chapman, U. Krause and E. Oeljeklaus, Monoids determined by a homogeneous linear Diophantine equation and the half-factorial property, J. Pure Appl. Algebra 151 (2000), no. 2, 107–133. 10.1016/S0022-4049(99)00062-6Search in Google Scholar

[19] S. T. Chapman and C. O’Neill, Factoring in the Chicken McNugget monoid, Math. Mag. 91 (2018), no. 5, 323–336. 10.1080/0025570X.2018.1515559Search in Google Scholar

[20] S. T. Chapman, W. A. Schmid and W. W. Smith, On minimal distances in Krull monoids with infinite class group, Bull. Lond. Math. Soc. 40 (2008), no. 4, 613–618. 10.1112/blms/bdn040Search in Google Scholar

[21] S. T. Chapman and W. W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra 159 (1993), no. 1, 176–190. 10.1006/jabr.1993.1153Search in Google Scholar

[22] R. Conaway, F. Gotti, J. Horton, C. O’Neill, R. Pelayo, M. Pracht and B. Wissman, Minimal presentations of shifted numerical monoids, Internat. J. Algebra Comput. 28 (2018), no. 1, 53–68. 10.1142/S0218196718500030Search in Google Scholar

[23] Y. Fan and S. Tringali, Power monoids: A bridge between factorization theory and arithmetic combinatorics, J. Algebra 512 (2018), 252–294. 10.1016/j.jalgebra.2018.07.010Search in Google Scholar

[24] R. M. Fossum, The Divisor Class Group of a Krull Domain, Ergeb. Math. Grenzgeb. (3) 74, Springer, New York, 1973. 10.1007/978-3-642-88405-4Search in Google Scholar

[25] S. Frisch, A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math. 171 (2013), no. 3–4, 341–350. 10.1007/s00605-013-0508-zSearch in Google Scholar

[26] J. I. García-García, M. A. Moreno-Frías and A. Vigneron-Tenorio, Computation of delta sets of numerical monoids, Monatsh. Math. 178 (2015), no. 3, 457–472. 10.1007/s00605-015-0785-9Search in Google Scholar

[27] P. A. García-Sánchez, D. Llena and A. Moscariello, Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math. 30 (2018), no. 1, 15–30. 10.1515/forum-2015-0065Search in Google Scholar

[28] P. A. García Sánchez, I. Ojeda and J. C. Rosales, Affine semigroups having a unique Betti element, J. Algebra Appl. 12 (2013), no. 3, Article ID 1250177. 10.1142/S0219498812501770Search in Google Scholar

[29] A. Geroldinger, A structure theorem for sets of lengths, Colloq. Math. 78 (1998), no. 2, 225–259. 10.4064/cm-78-2-225-259Search in Google Scholar

[30] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel (2009), 1–86. 10.1007/978-3-7643-8962-8Search in Google Scholar

[31] A. Geroldinger, Sets of lengths, Amer. Math. Monthly 123 (2016), no. 10, 960–988. 10.4169/amer.math.monthly.123.10.960Search in Google Scholar

[32] A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer and W. A. Schmid, On the arithmetic of Krull monoids with infinite cyclic class group, J. Pure Appl. Algebra 214 (2010), no. 12, 2219–2250. 10.1016/j.jpaa.2010.02.024Search in Google Scholar

[33] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. (Boca Raton) 278, Chapman & Hall/CRC, Boca Raton, 2006. 10.1201/9781420003208Search in Google Scholar

[34] A. Geroldinger and W. A. Schmid, A realization theorem for sets of distances, J. Algebra 481 (2017), 188–198. 10.1016/j.jalgebra.2017.03.003Search in Google Scholar

[35] A. Geroldinger and W. A. Schmid, A realization theorem for sets of lengths in numerical monoids, Forum Math. 30 (2018), no. 5, 1111–1118. 10.1515/forum-2017-0180Search in Google Scholar

[36] A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1203–1208. 10.1112/blms/bds046Search in Google Scholar

[37] A. Geroldinger and Q. Zhong, The catenary degree of Krull monoids II, J. Aust. Math. Soc. 98 (2015), no. 3, 324–354. 10.1017/S1446788714000585Search in Google Scholar

[38] A. Geroldinger and Q. Zhong, The set of minimal distances in Krull monoids, Acta Arith. 173 (2016), no. 2, 97–120. 10.4064/aa7906-1-2016Search in Google Scholar

[39] F. Gotti, Systems of sets of lengths of Puiseux monoids, J. Pure Appl. Algebra 223 (2019), no. 5, 1856–1868. 10.1016/j.jpaa.2018.08.004Search in Google Scholar

[40] F. Gotti and C. O’Neill, The elasticity of Puiseux monoids, J. Commut. Algebra 12 (2020), no. 3, 319–331. 10.1216/jca.2020.12.319Search in Google Scholar

[41] F. Kainrath, Factorization in Krull monoids with infinite class group, Colloq. Math. 80 (1999), no. 1, 23–30. 10.4064/cm-80-1-23-30Search in Google Scholar

[42] C. O’Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221 (2017), no. 12, 3069–3088. 10.1016/j.jpaa.2017.02.014Search in Google Scholar

Received: 2020-10-13
Revised: 2021-11-10
Published Online: 2021-12-01
Published in Print: 2022-03-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0149/html
Scroll to top button