Abstract
For a commutative cancellative monoid M, we introduce the notion of the length density of both a nonunit
Acknowledgements
The authors wish to thank the referee for many comments and suggestions that greatly improved our paper.
References
[1] D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy, V. Ponomarenko and R. Rosenbaum, Bifurcus semigroups and rings, Involve 2 (2009), no. 3, 351–356. 10.2140/involve.2009.2.351Search in Google Scholar
[2] D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra 80 (1992), no. 3, 217–235. 10.1016/0022-4049(92)90144-5Search in Google Scholar
[3] D. D. Anderson, D. F. Anderson, S. T. Chapman and W. W. Smith, Rational elasticity of factorizations in Krull domains, Proc. Amer. Math. Soc. 117 (1993), no. 1, 37–43. 10.1090/S0002-9939-1993-1106176-1Search in Google Scholar
[4] D. D. Anderson and J. L. Mott, Cohen–Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra 148 (1992), no. 1, 17–41. 10.1016/0021-8693(92)90234-DSearch in Google Scholar
[5] D. F. Anderson, S. T. Chapman and W. W. Smith, On Krull half-factorial domains with infinite cyclic divisor class group, Houston J. Math. 20 (1994), no. 4, 561–570. Search in Google Scholar
[6] D. F. Anderson and P. Pruis, Length functions on integral domains, Proc. Amer. Math. Soc. 113 (1991), no. 4, 933–937. 10.1090/S0002-9939-1991-1057742-1Search in Google Scholar
[7] N. Baeth, V. Ponomarenko, D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy and R. Rosenbaum, Number theory of matrix semigroups, Linear Algebra Appl. 434 (2011), no. 3, 694–711. 10.1016/j.laa.2010.09.028Search in Google Scholar
[8] P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer and Y. She, On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra 214 (2010), no. 8, 1334–1339. 10.1016/j.jpaa.2009.10.015Search in Google Scholar
[9] P. Baginski, S. T. Chapman and G. J. Schaeffer, On the delta set of a singular arithmetical congruence monoid, J. Théor. Nombres Bordeaux 20 (2008), no. 1, 45–59. 10.5802/jtnb.615Search in Google Scholar
[10] M. Banister, J. Chaika, S. T. Chapman and W. Meyerson, On the arithmetic of arithmetical congruence monoids, Colloq. Math. 108 (2007), no. 1, 105–118. 10.4064/cm108-1-9Search in Google Scholar
[11] M. Banister, J. Chaika, S. T. Chapman and W. Meyerson, A theorem on accepted elasticity in certain local arithmetical congruence monoids, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 1, 79–86. 10.1007/s12188-008-0012-xSearch in Google Scholar
[12] T. Barron, C. O’Neill and R. Pelayo, On the set of elasticities in numerical monoids, Semigroup Forum 94 (2017), no. 1, 37–50. 10.1007/s00233-015-9740-2Search in Google Scholar
[13] V. Blanco, P. A. García-Sánchez and A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math. 55 (2011), no. 4, 1385–1414. 10.1215/ijm/1373636689Search in Google Scholar
[14] C. Bowles, S. T. Chapman, N. Kaplan and D. Reiser, On delta sets of numerical monoids, J. Algebra Appl. 5 (2006), no. 5, 695–718. 10.1142/S0219498806001958Search in Google Scholar
[15] S. T. Chapman, F. Gotti and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020), no. 1, 380–396. 10.1080/00927872.2019.1646269Search in Google Scholar
[16] S. T. Chapman, F. Gotti and R. Pelayo, On delta sets and their realizable subsets in Krull monoids with cyclic class groups, Colloq. Math. 137 (2014), no. 1, 137–146. 10.4064/cm137-1-10Search in Google Scholar
[17] S. T. Chapman, M. T. Holden and T. A. Moore, Full elasticity in atomic monoids and integral domains, Rocky Mountain J. Math. 36 (2006), no. 5, 1437–1455. 10.1216/rmjm/1181069375Search in Google Scholar
[18] S. T. Chapman, U. Krause and E. Oeljeklaus, Monoids determined by a homogeneous linear Diophantine equation and the half-factorial property, J. Pure Appl. Algebra 151 (2000), no. 2, 107–133. 10.1016/S0022-4049(99)00062-6Search in Google Scholar
[19] S. T. Chapman and C. O’Neill, Factoring in the Chicken McNugget monoid, Math. Mag. 91 (2018), no. 5, 323–336. 10.1080/0025570X.2018.1515559Search in Google Scholar
[20] S. T. Chapman, W. A. Schmid and W. W. Smith, On minimal distances in Krull monoids with infinite class group, Bull. Lond. Math. Soc. 40 (2008), no. 4, 613–618. 10.1112/blms/bdn040Search in Google Scholar
[21] S. T. Chapman and W. W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Algebra 159 (1993), no. 1, 176–190. 10.1006/jabr.1993.1153Search in Google Scholar
[22] R. Conaway, F. Gotti, J. Horton, C. O’Neill, R. Pelayo, M. Pracht and B. Wissman, Minimal presentations of shifted numerical monoids, Internat. J. Algebra Comput. 28 (2018), no. 1, 53–68. 10.1142/S0218196718500030Search in Google Scholar
[23] Y. Fan and S. Tringali, Power monoids: A bridge between factorization theory and arithmetic combinatorics, J. Algebra 512 (2018), 252–294. 10.1016/j.jalgebra.2018.07.010Search in Google Scholar
[24] R. M. Fossum, The Divisor Class Group of a Krull Domain, Ergeb. Math. Grenzgeb. (3) 74, Springer, New York, 1973. 10.1007/978-3-642-88405-4Search in Google Scholar
[25] S. Frisch, A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math. 171 (2013), no. 3–4, 341–350. 10.1007/s00605-013-0508-zSearch in Google Scholar
[26] J. I. García-García, M. A. Moreno-Frías and A. Vigneron-Tenorio, Computation of delta sets of numerical monoids, Monatsh. Math. 178 (2015), no. 3, 457–472. 10.1007/s00605-015-0785-9Search in Google Scholar
[27] P. A. García-Sánchez, D. Llena and A. Moscariello, Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math. 30 (2018), no. 1, 15–30. 10.1515/forum-2015-0065Search in Google Scholar
[28] P. A. García Sánchez, I. Ojeda and J. C. Rosales, Affine semigroups having a unique Betti element, J. Algebra Appl. 12 (2013), no. 3, Article ID 1250177. 10.1142/S0219498812501770Search in Google Scholar
[29] A. Geroldinger, A structure theorem for sets of lengths, Colloq. Math. 78 (1998), no. 2, 225–259. 10.4064/cm-78-2-225-259Search in Google Scholar
[30] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel (2009), 1–86. 10.1007/978-3-7643-8962-8Search in Google Scholar
[31] A. Geroldinger, Sets of lengths, Amer. Math. Monthly 123 (2016), no. 10, 960–988. 10.4169/amer.math.monthly.123.10.960Search in Google Scholar
[32] A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer and W. A. Schmid, On the arithmetic of Krull monoids with infinite cyclic class group, J. Pure Appl. Algebra 214 (2010), no. 12, 2219–2250. 10.1016/j.jpaa.2010.02.024Search in Google Scholar
[33] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. (Boca Raton) 278, Chapman & Hall/CRC, Boca Raton, 2006. 10.1201/9781420003208Search in Google Scholar
[34] A. Geroldinger and W. A. Schmid, A realization theorem for sets of distances, J. Algebra 481 (2017), 188–198. 10.1016/j.jalgebra.2017.03.003Search in Google Scholar
[35] A. Geroldinger and W. A. Schmid, A realization theorem for sets of lengths in numerical monoids, Forum Math. 30 (2018), no. 5, 1111–1118. 10.1515/forum-2017-0180Search in Google Scholar
[36] A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1203–1208. 10.1112/blms/bds046Search in Google Scholar
[37] A. Geroldinger and Q. Zhong, The catenary degree of Krull monoids II, J. Aust. Math. Soc. 98 (2015), no. 3, 324–354. 10.1017/S1446788714000585Search in Google Scholar
[38] A. Geroldinger and Q. Zhong, The set of minimal distances in Krull monoids, Acta Arith. 173 (2016), no. 2, 97–120. 10.4064/aa7906-1-2016Search in Google Scholar
[39] F. Gotti, Systems of sets of lengths of Puiseux monoids, J. Pure Appl. Algebra 223 (2019), no. 5, 1856–1868. 10.1016/j.jpaa.2018.08.004Search in Google Scholar
[40] F. Gotti and C. O’Neill, The elasticity of Puiseux monoids, J. Commut. Algebra 12 (2020), no. 3, 319–331. 10.1216/jca.2020.12.319Search in Google Scholar
[41] F. Kainrath, Factorization in Krull monoids with infinite class group, Colloq. Math. 80 (1999), no. 1, 23–30. 10.4064/cm-80-1-23-30Search in Google Scholar
[42] C. O’Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221 (2017), no. 12, 3069–3088. 10.1016/j.jpaa.2017.02.014Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the variance of the nodal volume of arithmetic random waves
- On length densities
- On weighted compactness of commutators of bilinear maximal Calderón–Zygmund singular integral operators
- Geometric nilpotent Lie algebras and zero-dimensional simple complete intersection singularities
- On cutting blocking sets and their codes
- Inertia groups and smooth structures on quaternionic projective spaces
- On the number of zeros of diagonal quartic forms over finite fields
- Weak martingale Hardy-type spaces associated with quasi-Banach function lattice
- A dual version of Huppert's ρ-σ conjecture for character codegrees
- A topological correspondence between partial actions of groups and inverse semigroup actions
- On homotopy braids
- Holomorphic convexity of pseudoconvex spaces in terms of the rank of structural sheaf
- The Shintani double zeta functions
- Homological dimensions relative to preresolving subcategories II
- Simplicity of indecomposable set-theoretic solutions of the Yang–Baxter equation
- A converse theorem for quasimodular forms
Articles in the same Issue
- Frontmatter
- On the variance of the nodal volume of arithmetic random waves
- On length densities
- On weighted compactness of commutators of bilinear maximal Calderón–Zygmund singular integral operators
- Geometric nilpotent Lie algebras and zero-dimensional simple complete intersection singularities
- On cutting blocking sets and their codes
- Inertia groups and smooth structures on quaternionic projective spaces
- On the number of zeros of diagonal quartic forms over finite fields
- Weak martingale Hardy-type spaces associated with quasi-Banach function lattice
- A dual version of Huppert's ρ-σ conjecture for character codegrees
- A topological correspondence between partial actions of groups and inverse semigroup actions
- On homotopy braids
- Holomorphic convexity of pseudoconvex spaces in terms of the rank of structural sheaf
- The Shintani double zeta functions
- Homological dimensions relative to preresolving subcategories II
- Simplicity of indecomposable set-theoretic solutions of the Yang–Baxter equation
- A converse theorem for quasimodular forms