Startseite Mathematik Shifted convolution sums for higher rank groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Shifted convolution sums for higher rank groups

  • Yujiao Jiang EMAIL logo und Guangshi Lü
Veröffentlicht/Copyright: 16. Oktober 2018

Abstract

In this paper, we study some shifted convolution sums for higher rank groups. In particular, we establish an asymptotic formula for a GL(4)×GL(2) shifted convolution sum

nx|λf(n)|2rl(n+b),

where λf(n) are normalized Fourier coefficients of a Hecke holomorphic cusp form and rl(n) denotes the number of representations of n by the quadratic form x12++xl2.


Communicated by Freydoon Shahidi


Award Identifier / Grant number: 2017M620285

Award Identifier / Grant number: ZR2018QA004

Award Identifier / Grant number: 11801318

Award Identifier / Grant number: 11771252

Award Identifier / Grant number: 11531008

Award Identifier / Grant number: IRT16R43

Funding statement: Jiang is supported by the China Postdoctoral Science Foundation (no. 2017M620285), the Natural Science Foundation of Shandong Province (no. ZR2018QA004) and NSFC (no. 11801318), and Lü is supported in part by NSFC (nos. 11771252, 11531008), IRT16R43 and Taishan Scholars.

Acknowledgements

The authors wish to thank the referee for valuable comments.

References

[1] F. V. Atkinson, The mean value of the zeta-function on the critical line, Proc. Lond. Math. Soc. (2) 47 (1941), 174–200. 10.1112/plms/s2-47.1.174Suche in Google Scholar

[2] L. Barthel and D. Ramakrishnan, A nonvanishing result for twists of L-functions of GL(n), Duke Math. J. 74 (1994), no. 3, 681–700. 10.1215/S0012-7094-94-07425-5Suche in Google Scholar

[3] P. T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70–101. 10.1090/S0002-9947-1951-0042438-4Suche in Google Scholar

[4] J. Bourgain, On the Fourier–Walsh spectrum of the Moebius function, Israel J. Math. 197 (2013), no. 1, 215–235. 10.1007/s11856-013-0002-2Suche in Google Scholar

[5] P. Deligne, La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273–307. 10.1007/BF02684373Suche in Google Scholar

[6] J.-M. Deshouillers and H. Iwaniec, An additive divisor problem, J. Lond. Math. Soc. (2) 26 (1982), no. 1, 1–14. 10.1112/jlms/s2-26.1.1Suche in Google Scholar

[7] T. Estermann, Über die Darstellungen einer Zahl als Differenz von zwei Produkten, J. Reine Angew. Math. 164 (1931), 173–182. 10.1515/crll.1931.164.173Suche in Google Scholar

[8] D. Goldfeld, Automorphic Forms and L-functions for the Group GL(n,𝐑), Cambridge Stud. Adv. Math. 99, Cambridge University, Cambridge, 2006. 10.1017/CBO9780511542923Suche in Google Scholar

[9] D. Goldfeld and X. Li, The Voronoi formula for GL(n,), Int. Math. Res. Not. IMRN 2008 (2008), no. 2, Article ID rnm144. Suche in Google Scholar

[10] G. H. Hardy, On the representation of a number as the sum of any number of squares, and in particular of five, Trans. Amer. Math. Soc. 21 (1920), no. 3, 255–284. 10.1090/S0002-9947-1920-1501144-7Suche in Google Scholar

[11] D. R. Heath-Brown, The fourth power moment of the Riemann zeta function, Proc. Lond. Math. Soc. (3) 38 (1979), no. 3, 385–422. 10.1112/plms/s3-38.3.385Suche in Google Scholar

[12] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar

[13] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. 10.2307/2374103Suche in Google Scholar

[14] H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. 10.1090/S0894-0347-02-00410-1Suche in Google Scholar

[15] E. M. Kıral and F. Zhou, The Voronoi formula and double Dirichlet series, Algebra Number Theory 10 (2016), no. 10, 2267–2286. 10.2140/ant.2016.10.2267Suche in Google Scholar

[16] G. Lü, J. Wu and W. Zhai, Shifted convolution of cusp-forms with θ-series, Ramanujan J. 40 (2016), no. 1, 115–133. 10.1007/s11139-015-9678-8Suche in Google Scholar

[17] W. Luo, Shifted convolution of cusp-forms with θ-series, Abh. Math. Semin. Univ. Hambg. 81 (2011), no. 1, 45–53. 10.1007/s12188-010-0046-8Suche in Google Scholar

[18] W. Luo, Z. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth 1996), Proc. Sympos. Pure Math. 66, American Mathematical Society, Providence (1999), 301–310. 10.1090/pspum/066.2/1703764Suche in Google Scholar

[19] S. D. Miller and W. Schmid, Automorphic distributions, L-functions, and Voronoi summation for GL(3), Ann. of Math. (2) 164 (2006), no. 2, 423–488. 10.4007/annals.2006.164.423Suche in Google Scholar

[20] S. D. Miller and W. Schmid, A general Voronoi summation formula for GL(n,), Geometry and Analysis. No. 2, Adv. Lect. Math. (ALM) 18, International Press, Somerville (2011), 173–224. Suche in Google Scholar

[21] R. Munshi, Shifted convolution sums for GL(3)×GL(2), Duke Math. J. 162 (2013), no. 13, 2345–2362. 10.1215/00127094-2371416Suche in Google Scholar

[22] N. J. E. Pitt, On shifted convolutions of ζ3(s) with automorphic L-functions, Duke Math. J. 77 (1995), no. 2, 383–406. 10.1215/S0012-7094-95-07711-4Suche in Google Scholar

[23] D. Ramakrishnan, Modularity of the Rankin–Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45–111. 10.2307/2661379Suche in Google Scholar

[24] X. Ren and Y. Ye, Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GLm(), Sci. China Math. 58 (2015), no. 10, 2105–2124. 10.1007/s11425-014-4955-3Suche in Google Scholar

[25] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math. 8 (1965), 1–15. 10.1090/pspum/008/0182610Suche in Google Scholar

[26] R. A. Smith, The average order of a class of arithmetic functions over arithmetic progressions with applications to quadratic forms, J. Reine Angew. Math. 317 (1980), 74–87. 10.1515/crll.1980.317.74Suche in Google Scholar

[27] Q. Sun, Shifted convolution sums of GL3 cusp forms with θ-series, Int. Math. Res. Not. IMRN 2017 (2017), no. 6, 1805–1829. 10.1093/imrn/rnw083Suche in Google Scholar

[28] R. C. Vaughan, The Hardy–Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge University, Cambridge, 1997. 10.1017/CBO9780511470929Suche in Google Scholar

[29] L. Weinstein, The hyper-Kloosterman sum, Enseign. Math. (2) 27 (1981), no. 1–2, 29–40. Suche in Google Scholar

Received: 2017-12-31
Revised: 2018-09-07
Published Online: 2018-10-16
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2017-0269/html?lang=de
Button zum nach oben scrollen