Startseite Mathematik Fans, decision problems and generators of free abelian ℓ-groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fans, decision problems and generators of free abelian -groups

  • Daniele Mundici EMAIL logo
Veröffentlicht/Copyright: 28. Januar 2017

Abstract

Let t1,,tn be -group terms in the variables X1,,Xm. Let t^1,,t^n be their associated piecewise homogeneous linear functions. Let G be the -group generated by t^1,,t^n in the free m-generator -group 𝒜m. We prove: (i) the problem whether G is -isomorphic to 𝒜n is decidable; (ii) the problem whether G is -isomorphic to 𝒜l (l arbitrary) is undecidable; (iii) for m=n, the problem whether {t^1,,t^n} is a free generating set is decidable. In view of the Baker–Beynon duality, these theorems yield recognizability and unrecognizability results for the rational polyhedron associated to the -group G. We make pervasive use of fans and their stellar subdivisions.


Communicated by Manfred Droste


References

[1] M. Anderson and T. Feil, Lattice-Ordered Groups. An Introduction, D. Reidel, Dordrecht, 1988. 10.1007/978-94-009-2871-8Suche in Google Scholar

[2] K. A. Baker, Free vector lattices, Canad. J. Math. 20 (1968), 58–66. 10.4153/CJM-1968-008-xSuche in Google Scholar

[3] W. M. Beynon, Duality theorems for finitely generated vector lattices, Proc. Lond. Math. Soc. (3) 31 (1975), 114–128. 10.1112/plms/s3-31.1.114Suche in Google Scholar

[4] W. M. Beynon, Applications of duality in the theory of finitely generated lattice-ordered abelian groups, Canad. J. Math. 29 (1977), 243–254. 10.4153/CJM-1977-026-4Suche in Google Scholar

[5] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math 608, Springer, Berlin, 1971. Suche in Google Scholar

[6] A. V. Chernavsky and V. P. Leksine, Unrecognizability of manifolds, Ann. Pure Appl. Logic 141 (2006), 325–335. 10.1016/j.apal.2005.12.011Suche in Google Scholar

[7] T. Evans, Finitely presented loops, lattices, etc. are hopfian, J. Lond. Math. Soc. (2) 44 (1969), 551–552. 10.1112/jlms/s1-44.1.551Suche in Google Scholar

[8] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math. 168, Springer, New York, 1996. 10.1007/978-1-4612-4044-0Suche in Google Scholar

[9] A. M. W. Glass, Partially Ordered Groups, Ser. Algebra 7, World Scientific, Singapore, 1999. 10.1142/3811Suche in Google Scholar

[10] A. M. Glass and W. C. Holland, Lattice-Ordered Groups: Advances and Techniques, Math. Appl. 48, Kluwer Academic, Dordrecht, 1989. 10.1007/978-94-009-2283-9Suche in Google Scholar

[11] A. M. W. Glass and J. J. Madden, The word problem versus the isomorphism problem, J. Lond. Math. Soc. (2) 30 (1984), 53–61. 10.1112/jlms/s2-30.1.53Suche in Google Scholar

[12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1960. Suche in Google Scholar

[13] R. Hirshon, Some Theorems on Hopficity, Trans. Amer. Math. Soc. 141 (1969), 229–244. 10.1090/S0002-9947-1969-0258939-3Suche in Google Scholar

[14] A. I. Kostrikin and I. R. Shafarevich, Algebra II: Noncommutative Rings Identities, Springer, New York, 2012. Suche in Google Scholar

[15] A. Mijatović, Simplifying triangulations of S3, Pacific J. Math. 208 (2003), no. 2, 291–324. 10.2140/pjm.2003.208.291Suche in Google Scholar

[16] D. Mundici, Simple Bratteli diagrams with a Gödel incomplete C*-equivalence problem, Trans. Amer. Math. Soc. 356 (2003), no. 5, 1937–1955. 10.1090/S0002-9947-03-03353-1Suche in Google Scholar

[17] T. Oda, Convex Bodies and Algebraic Geometry, Springer, Berlin, 1988. 10.1007/978-3-642-72547-0Suche in Google Scholar

[18] E. Outerelo and J. M. Ruiz, Mapping Degree Theory, Grad. Stud. Math. 108, American Mathematical Society, Providence, 2009. 10.1090/gsm/108Suche in Google Scholar

[19] M. A. Shtan’ko, Markov’s theorem and algorithmically non-recognizable combinatorial manifolds, Izv. Math. 68 (2004), 207–224. 10.1070/IM2004v068n01ABEH000471Suche in Google Scholar

[20] J. R. Stallings, Lectures on Polyhedral Topology, Tata Institute of Fundamental Research, Mumbay, 1967. Suche in Google Scholar

[21] A. Thompson, Thin position and the recognition problem for S3, Math. Res. Lett. 1 (1994), no. 5, 613–630. 10.4310/MRL.1994.v1.n5.a9Suche in Google Scholar

[22] V. Weispfenning, The complexity of the word problem for abelian -groups, Theoret. Comput. Sci. 48 (1986), 127–132. 10.1016/0304-3975(86)90089-7Suche in Google Scholar

Received: 2016-12-15
Revised: 2016-12-28
Published Online: 2017-1-28
Published in Print: 2017-11-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0255/pdf
Button zum nach oben scrollen