Startseite The local Langlands conjecture for p-adic GSpin4, GSpin6, and their inner forms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The local Langlands conjecture for p-adic GSpin4, GSpin6, and their inner forms

  • Mahdi Asgari EMAIL logo und Kwangho Choiy
Veröffentlicht/Copyright: 19. Januar 2017

Abstract

We establish the local Langlands conjecture for small rank general spin groups GSpin4 and GSpin6 as well as their inner forms. We construct appropriate L-packets and prove that these L-packets satisfy the properties expected of them to the extent that the corresponding local factors are available. We are also able to determine the exact sizes of the L-packets in many cases.


Communicated by Freydoon Shahidi


Funding source: Simons Foundation

Award Identifier / Grant number: 245422

Funding statement: The first author was partially supported by a Collaborations Grant (#245422) from the Simons Foundation. The second author was partially supported by an AMS-Simons Travel Grant.

Acknowledgements

This work has benefited from many helpful conversations with Wee Teck Gan and the authors would like to thank him for all his help. The authors also thank Maarten Solleveld for his feedback and comments on this work. We also thank the referee for helpful comments.

References

[1] J. Arthur, A note on L-packets, Pure Appl. Math. Q. 2 (2006), no. 1, 199–217. 10.4310/PAMQ.2006.v2.n1.a9Suche in Google Scholar

[2] J. Arthur, The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups, Amer. Math. Soc. Colloq. Publ. 61, American Mathematical Society, Providence, 2013. Suche in Google Scholar

[3] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Stud. 120, Princeton University Press, Princeton, 1989. 10.1515/9781400882403Suche in Google Scholar

[4] M. Asgari, Local L-functions for split spinor groups, Canad. J. Math. 54 (2002), no. 4, 673–693. 10.4153/CJM-2002-025-8Suche in Google Scholar

[5] M. Asgari, J. W. Cogdell and F. Shahidi, Local Transfer and reducibility of induced representations of p-adic groups of classical type, Advances in the Theory of Automorphic Forms and their L-Functions (Vienna 2013), Contemp. Math. 664, American Mathematical Society, Providence (2016), 1–22. 10.1090/conm/664/13113Suche in Google Scholar

[6] M. Asgari, J. W. Cogdell and F. Shahidi, Rankin–Selberg L-functions for GSpin×GL Groups, in preparation. Suche in Google Scholar

[7] M. Asgari and F. Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), no. 1, 137–190. 10.1215/S0012-7094-06-13214-3Suche in Google Scholar

[8] M. Asgari and F. Shahidi, Image of functoriality for general spin groups, Manuscripta Math. 144 (2014), no. 3–4, 609–638. 10.1007/s00229-014-0662-1Suche in Google Scholar

[9] A.-M. Aubert, P. Baum, R. Plymen and M. Solleveld, The local Langlands correspondence for inner forms of SLn, Res. Math. Sci. 3 (2016), no. 1, Paper No. 32. 10.1186/s40687-016-0079-4Suche in Google Scholar

[10] A. I. Badulescu, Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), no. 2, 383–438. 10.1007/s00222-007-0104-8Suche in Google Scholar

[11] A. Borel, Automorphic L-functions, Automorphic Forms, Representations and L-Functions (Corvallis/Oregon 1977), Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence (1979), 27–61. 10.1090/pspum/033.2/546608Suche in Google Scholar

[12] C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for GL(2), Grundlehren Math. Wiss. 335, Springer, Berlin, 2006. 10.1007/3-540-31511-XSuche in Google Scholar

[13] P.-S. Chan and W. T. Gan, The local Langlands conjecture for GSp(4) III: Stability and twisted endoscopy, J. Number Theory 146 (2015), 69–133. 10.1016/j.jnt.2013.07.009Suche in Google Scholar

[14] K. F. Chao and W.-W. Li, Dual R-groups of the inner forms of SL(N), Pacific J. Math. 267 (2014), no. 1, 35–90. 10.2140/pjm.2014.267.35Suche in Google Scholar

[15] K. Choiy, Transfer of Plancherel measures for unitary supercuspidal representations between p-adic inner forms, Canad. J. Math. 66 (2014), no. 3, 566–595. 10.4153/CJM-2012-063-1Suche in Google Scholar

[16] K. Choiy, The local Langlands conjecture for the p-adic inner form of Sp4, preprint (2015), https://arxiv.org/abs/1510.00900; to appear in Int. Math. Res. Not. IMRN. 10.1093/imrn/rnw043Suche in Google Scholar

[17] K. Choiy, On multiplicity in restriction for p-adic groups, preprint (2016), https://arxiv.org/abs/1306.6118v5. Suche in Google Scholar

[18] K. Choiy and D. Goldberg, Transfer of R-groups between p-adic inner forms of SLn, Manuscripta Math. 146 (2015), no. 1–2, 125–152. 10.1007/s00229-014-0689-3Suche in Google Scholar

[19] P. Deligne, D. Kazhdan and M.-F. Vignéras, Représentations des algèbres centrales simples p-adiques, Représentations des groups réductifs sur un corps local, Trav. Cours, Hermann, Paris (1984), 33–117. Suche in Google Scholar

[20] W. T. Gan and S. Takeda, The local Langlands conjecture for Sp(4), Int. Math. Res. Not. IMRN 2010 (2010), no. 15, 2987–3038. 10.1093/imrn/rnp203Suche in Google Scholar

[21] W. T. Gan and S. Takeda, The local Langlands conjecture for GSp(4), Ann. of Math. (2) 173 (2011), no. 3, 1841–1882. 10.4007/annals.2011.173.3.12Suche in Google Scholar

[22] W. T. Gan and W. Tantono, The local Langlands conjecture for GSp(4). II: The case of inner forms, Amer. J. Math. 136 (2014), no. 3, 761–805. 10.1353/ajm.2014.0016Suche in Google Scholar

[23] S. S. Gelbart and A. W. Knapp, L-indistinguishability and R groups for the special linear group, Adv. Math. 43 (1982), no. 2, 101–121. 10.1016/0001-8708(82)90030-5Suche in Google Scholar

[24] B. H. Gross and D. Prasad, On the decomposition of a representation of SOn when restricted to SOn-1, Canad. J. Math. 44 (1992), no. 5, 974–1002. 10.4153/CJM-1992-060-8Suche in Google Scholar

[25] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. of Math. Stud. 151, Princeton University Press, Princeton, 2001. 10.1515/9781400837205Suche in Google Scholar

[26] G. Henniart, Représentations du groupe de Weil d’un corps local, Enseign. Math. (2) 26 (1980), no. 1–2, 155–172. Suche in Google Scholar

[27] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139 (2000), no. 2, 439–455. 10.1007/s002220050012Suche in Google Scholar

[28] K. Hiraga and H. Saito, On L-packets for inner forms of SLn, Mem. Amer. Math. Soc. 215 (2012), no. 1013, 1–97. 10.1090/S0065-9266-2011-00642-8Suche in Google Scholar

[29] R. Howe and A. Silberger, Why any unitary principal series representation of SLn over a p-adic field decomposed simply, Bull. Amer. Math. Soc. 81 (1975), 599–601. 10.1090/S0002-9904-1975-13750-5Suche in Google Scholar

[30] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin, 1970. 10.1007/BFb0058988Suche in Google Scholar

[31] T. Kaletha, A. Minguez, S. W. Shin and P.-J. White, Endoscopic classification of representations: Inner forms of unitary groups, preprint (2014), https://arxiv.org/abs/1409.3731v3. Suche in Google Scholar

[32] H. Koch, Classification of the primitive representations of the Galois group of local fields, Invent. Math. 40 (1977), no. 2, 195–216. 10.1007/BF01390345Suche in Google Scholar

[33] R. E. Kottwitz, Stable trace formula: Cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. 10.1215/S0012-7094-84-05129-9Suche in Google Scholar

[34] R. E. Kottwitz, Stable trace formula: Elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. 10.1007/BF01458611Suche in Google Scholar

[35] R. E. Kottwitz, Isocrystals with additional structure. II, Compos. Math. 109 (1997), no. 3, 255–339. 10.1023/A:1000102604688Suche in Google Scholar

[36] J.-P. Labesse, Cohomologie, L-groupes et fonctorialité, Compos. Math. 55 (1985), no. 2, 163–184. Suche in Google Scholar

[37] J.-P. Labesse and R. P. Langlands, L-indistinguishability for SL(2), Canad. J. Math. 31 (1979), no. 4, 726–785. 10.4153/CJM-1979-070-3Suche in Google Scholar

[38] E. M. Lapid and S. Rallis, On the local factors of representations of classical groups, Automorphic Representations, L-Functions and Applications. Progress and Prospects (Columbus 2003), Ohio State Univ. Math. Res. Inst. Publ. 11, De Gruyter, Berlin (2005), 309–359. 10.1515/9783110892703.309Suche in Google Scholar

[39] C. P. Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, 1–248. 10.1090/memo/1108Suche in Google Scholar

[40] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure Appl. Math. 139, Academic Press, Boston, 1994. Suche in Google Scholar

[41] J. D. Rogawski, Representations of GL(n) and division algebras over a p-adic field, Duke Math. J. 50 (1983), no. 1, 161–196. 10.1215/S0012-7094-83-05006-8Suche in Google Scholar

[42] J. D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Ann. of Math. Stud. 123, Princeton University Press, Princeton, 1990. 10.1515/9781400882441Suche in Google Scholar

[43] I. Satake, Classification Theory of Semi-Simple Algebraic Groups, Lecture Notes Pure Appl. Math. 3, Marcel Dekker, New York, 1971. Suche in Google Scholar

[44] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. 10.2307/1971524Suche in Google Scholar

[45] F. Shahidi, On multiplicativity of local factors, Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday. Part II: Papers in Analysis, Number Theory and Automorphic L-functions, Isr. Math. Conf. Proc. 3, Weizmann, Jerusalem (1990), 279–289. Suche in Google Scholar

[46] P. Scholze, The local Langlands correspondence for GLn over p-adic fields, Invent. Math. 192 (2013), no. 3, 663–715. 10.1007/s00222-012-0420-5Suche in Google Scholar

[47] M. Tadić, Notes on representations of non-Archimedean SL(n), Pacific J. Math. 152 (1992), no. 2, 375–396. 10.2140/pjm.1992.152.375Suche in Google Scholar

[48] A. Weil, Exercices dyadiques, Invent. Math. 27 (1974), 1–22. 10.1007/BF01389962Suche in Google Scholar

Received: 2016-10-11
Revised: 2016-12-24
Published Online: 2017-1-19
Published in Print: 2017-11-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0213/html?lang=de
Button zum nach oben scrollen