Home Mathematics Very ampleness of the bicanonical line bundle on compact complex 2-ball quotients
Article
Licensed
Unlicensed Requires Authentication

Very ampleness of the bicanonical line bundle on compact complex 2-ball quotients

  • Sai-Kee Yeung EMAIL logo
Published/Copyright: July 21, 2017

Abstract

The purpose of this note is to show that 2K of any smooth compact complex 2-ball quotient is very ample, except possibly for four pairs of fake projective planes of minimal type, where K is the canonical line bundle. For the four pairs of fake projective planes, the sections of 2KM give an embedding of M except possibly for at most two points on M.

MSC 2010: 14E25; 14J29

Communicated by Jan Bruinier


Award Identifier / Grant number: DMS-1501282

Funding statement: The author was partially supported by a grant from the National Science Foundation (grant no. DMS-1501282).

A Appendix

Here we list the fake projective planes according to types discussed in the proof of Theorem 5.1. The naming of the fake projective planes is given according to the naming of Cartwright and Steger in [6]. There are altogether 50 lattices of PU(2,1). Further explanation of the nomenclature can be found in [18, 5].

Table 1

List of cases of fake projective planes.

Mcases
(a=1,p=5,,D3)(b)
(a=1,p=5,{2},D3)(b)
(a=1,p=5,{2I})(c)
(a=2,p=3,,D3)(b)
(a=2,p=3,{2},D3))(b)
(a=2,p=3,{2I})(c)
(a=7,p=2,,D327)(b)
(a=7,p=2,,721)(d)
(a=7,p=2,,D3X7)(b)
(a=7,p=2,{7},D327)(b)
(a=7,p=2,{7},D377)(b)
(a=7,p=2,{7},D377)(b)
(a=7,p=2,{7},721)(c)
(a=7,p=2,{3},D3)(b)
(a=7,p=2,{3},33)(c)
(a=7,p=2,{3,7},D3)(b)
(a=7,p=2,{3,7},33)(c)
(a=7,p=2,{5})min type
(a=7,p=2,{5,7})min type
(a=15,p=2,,D3)(b)
(a=15,p=2,,33)(c)
(a=15,p=2,{3},D3)(b)
(a=15,p=2,{3},33)(b)
(a=15,p=2,{3},(D3)3)(b)
(a=15,p=2,{5},D3)(b)
Mcases
(a=15,p=2,{5},33)(c)
(a=15,p=2,{3,5},D3)(b)
(a=15,p=2,{3,5},33)(b)
(a=15,p=2,{3,5},(D3)3)(b)
(a=23,p=2,)min type
(a=23,p=2,{23})min type
(𝒞2,p=2,,d3D3)(b)
(𝒞2,p=2,,D3X3)(b)
(𝒞2,p=2,,(dD)3X3)(b)
(𝒞2,p=2,,(d2D)3X3)(b)
(𝒞2,p=2,,d3X3)(c)
(𝒞2,p=2,,X9)(c)
(𝒞2,p=2,{3},d3D3)(b)
(𝒞10,p=2,,D3)(b)
(𝒞10,p=2,{17-},D3)(b)
(𝒞18,p=3,,d3D3)(b)
(𝒞18,p=3,{2},D3)(b)
(𝒞18,p=3,{2},(dD)3)(b)
(𝒞18,p=3,{2},(d2D)3)(b)
(𝒞18,p=3,{2I})(c)
(𝒞20,{v2},,D327)(b)
(𝒞20,{v2},{3+},D3)(b)
(𝒞20,{v2},{3+},{3+}3)(c)
(𝒞20,{v2},{3-},D3)(b)
(𝒞20,{v2},{3-},{3-}3)(c)

Acknowledgements

The author is grateful to Lawrence Ein for raising the question about the Cartwright–Steger surfaces and for explaining the argument of Reider to the author, to Rong Du and Ching-Jui Lai for helpful discussions, to Fabrizio Catanese, and a referee for pointing out a gap in an earlier draft of this paper. It is a pleasure for the author to express his gratitude to the referees for very helpful comments and suggestions on the article.

References

[1] I. Bauer, F. Catanese and R. Pignatelli, Surfaces of general type with geometric genus zero: A survey, Complex and Differential Geometry, Springer Proc. Math. 8, Springer, Heidelberg (2011), 1–48. 10.1007/978-3-642-20300-8_1Search in Google Scholar

[2] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Études Sci. 42 (1973), 171–219. 10.1007/BF02685880Search in Google Scholar

[3] G. Borrelli, The classification of surfaces of general type with nonbirational bicanonical map, J. Algebraic Geom. 16 (2007), no. 4, 625–669. 10.1090/S1056-3911-07-00478-XSearch in Google Scholar

[4] D. Cartwright, V. Koziarz and S.-K. Yeung, On the Cartwright–Steger surface, preprint (2014), https://arxiv.org/abs/1412.4137; to appear in J. Algebraic Geom. 10.1090/jag/696Search in Google Scholar

[5] D. Cartwright and T. Steger, Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1–2, 11–13. 10.1016/j.crma.2009.11.016Search in Google Scholar

[6] D. Cartwright and T. Steger, http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/registerofgps.txt. Search in Google Scholar

[7] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 5–89. 10.1007/BF02831622Search in Google Scholar

[8] G. Di Brino and L. Di Cerbo, Exceptional collections and the bicanonical map of Keums fake projective planes, preprint (2016), https://arxiv.org/abs/1603.04378v1. Search in Google Scholar

[9] J.-M. Hwang and W.-K. To, On Seshadri constants of canonical bundles of compact complex hyperbolic spaces, Compos. Math. 118 (1999), no. 2, 203–215. 10.1023/A:1001074801110Search in Google Scholar

[10] T. Kappeler and J. Pöschel, KdV & KAM, Ergeb. Math. Grenzgeb. (3) 45, Springer, Berlin, 2003. 10.1007/978-3-662-08054-2Search in Google Scholar

[11] J. Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008), no. 4, 2497–2515. 10.2140/gt.2008.12.2497Search in Google Scholar

[12] C. L. Lai and S.-K. Yeung, Exceptional collections on some fake projective planes, preprint (2014), www.math.purdue.edu/~yeung/papers/FPP-van_r.pdf. 10.1093/imrn/rnab186Search in Google Scholar

[13] R. Le Vavasseur, Sur le système d’équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables F1(α,β,β,γ;x,y), Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 7 (1893), no. 4, F121–F205. 10.5802/afst.94Search in Google Scholar

[14] K. Liu, Geometric height inequalities, Math. Res. Lett. 3 (1996), no. 5, 693–702. 10.4310/MRL.1996.v3.n5.a10Search in Google Scholar

[15] M. Mendes Lopes and R. Pardini, The bicanonical map of surfaces with pg=0 and K27. II, Bull. Lond. Math. Soc. 35 (2003), no. 3, 337–343. 10.1112/S0024609302001819Search in Google Scholar

[16] D. Mumford, An algebraic surface with K ample, (K2)=9, pg=q=0, Amer. J. Math. 101 (1979), no. 1, 233–244. 10.2307/2373947Search in Google Scholar

[17] É. Picard, Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. Sci. Éc. Norm. Supér. (3) 2 (1885), 357–384. 10.24033/asens.267Search in Google Scholar

[18] G. Prasad and S.-K. Yeung, Fake projective planes, Invent. Math. 168 (2007), no. 2, 321–370. 10.1007/s00222-007-0034-5Search in Google Scholar

[19] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309–316. 10.2307/2007055Search in Google Scholar

[20] S.-K. Yeung, Very ampleness of line bundles and canonical embedding of coverings of manifolds, Compos. Math. 123 (2000), no. 2, 209–223. 10.1023/A:1002036918249Search in Google Scholar

[21] S.-K. Yeung, Classification of fake projective planes, Handbook of Geometric Analysis. no. 2, Adv. Lect. Math. (ALM) 13, International Press, Somerville (2010), 391–431. Search in Google Scholar

[22] S.-K. Yeung, Classification of surfaces of general type with Euler number 3, J. Reine Angew. Math. 679 (2013), 1–22. 10.1515/CRELLE.2011.178Search in Google Scholar

[23] S.-K. Yeung, Exotic structures arising from fake projective planes, Sci. China Math. 56 (2013), no. 1, 43–54; Addendum, Sci. China Math. 58 (2015), 2473–2476. 10.1007/s11425-012-4446-3Search in Google Scholar

[24] S.-K. Yeung, Foliations associated to harmonic maps on some complex two ball quotients, Sci. China Math. 60 (2017), no. 6, 1137–1148. 10.1007/s11425-016-9044-8Search in Google Scholar

Received: 2016-5-4
Revised: 2017-6-9
Published Online: 2017-7-21
Published in Print: 2018-3-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0113/pdf
Scroll to top button