Home Mathematics On symplectic semifield spreads of PG(5,q2), q odd
Article
Licensed
Unlicensed Requires Authentication

On symplectic semifield spreads of PG(5,q2), q odd

  • Giuseppe Marino and Valentina Pepe EMAIL logo
Published/Copyright: August 15, 2017

Abstract

We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG(5,q2), for q2>238 odd, whose associated semifield has center containing 𝔽q. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2>238 odd, with middle nucleus containing 𝔽q2 and center containing 𝔽q.


Communicated by Jan Bruinier


Funding statement: The first author was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM).

References

[1] A. A. Albert, Generalized twisted fields, Pacific J. Math. 11 (1961), 1–8. 10.2140/pjm.1961.11.1Search in Google Scholar

[2] L. Bader, W. M. Kantor and G. Lunardon, Symplectic spreads from twisted fields, Boll. Unione Mat. Ital. (7) 8 (1994), no. 3, 383–389. Search in Google Scholar

[3] J. Bierbrauer, New semifields, PN and APN functions, Des. Codes Cryptogr. 54 (2010), no. 3, 189–200. 10.1007/s10623-009-9318-7Search in Google Scholar

[4] J. Bierbrauer, Commutative semifields from projection mappings, Des. Codes Cryptogr. 61 (2011), no. 2, 187–196. 10.1007/s10623-010-9447-zSearch in Google Scholar

[5] J. Bierbrauer and W. M. Kantor, A projection construction for semifields, preprint (2012), https://arxiv.org/abs/1201.0366. Search in Google Scholar

[6] L. Budaghyan and T. Helleseth, New perfect nonlinear multinomials over 𝐅p2k for any odd prime p, Sequences and Their Applications—SETA 2008, Lecture Notes in Comput. Sci. 5203, Springer, Berlin, (2008), 403–414. 10.1007/978-3-540-85912-3_35Search in Google Scholar

[7] A. Cafure and G. Matera, Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl. 12 (2006), no. 2, 155–185. 10.1016/j.ffa.2005.03.003Search in Google Scholar

[8] S. Capparelli and V. Pepe, On symplectic semifield spreads of PG(5,q2), q even, J. Algebraic Combin. 46 (2017), no. 2, 275–286. 10.1007/s10801-017-0742-xSearch in Google Scholar

[9] P. Dembowski, Finite Geometries, Ergeb. Math. Grenzgeb. (3) 44, Springer, Berlin, 1968. 10.1007/978-3-642-62012-6Search in Google Scholar

[10] J. Harris, Algebraic Geometry. A First Course, Grad. Texts in Math. 133, Springer, New York, 1992. 10.1007/978-1-4757-2189-8Search in Google Scholar

[11] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford Math. Monogr., Oxford University Press, New York, 1991. Search in Google Scholar

[12] N. L. Johnson, V. Jha and M. Biliotti, Handbook of Finite Translation Planes, Pure Appl. Math. (Boca Raton) 289, Chapman & Hall/CRC, Boca Raton, 2007. 10.1201/9781420011142Search in Google Scholar

[13] W. M. Kantor, Commutative semifields and symplectic spreads, J. Algebra 270 (2003), no. 1, 96–114. 10.1016/S0021-8693(03)00411-3Search in Google Scholar

[14] D. E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965), 182–217. 10.1016/0021-8693(65)90018-9Search in Google Scholar

[15] M. Lavrauw, Finite semifields with a large nucleus and higher secant varieties to Segre varieties, Adv. Geom. 11 (2011), no. 3, 399–410. 10.1515/advgeom.2011.014Search in Google Scholar

[16] M. Lavrauw and O. Polverino, Finite semifields, Current Research Topics in Galois Geometry, Nova Science Publishers, New York (2014), 131–159. Search in Google Scholar

[17] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Addison-Wesley, Reading, 1983. Search in Google Scholar

[18] G. Lunardon, Translation ovoids, J. Geom. 76 (2003), no. 1–2, 200–215. 10.1007/s00022-003-1698-7Search in Google Scholar

[19] G. Lunardon, G. Marino, O. Polverino and R. Trombetti, Symplectic semifield spreads of PG(5,q) and the Veronese surface, Ric. Mat. 60 (2011), no. 1, 125–142. 10.1007/s11587-010-0098-1Search in Google Scholar

[20] G. Lunardon and O. Polverino, Translation ovoids of orthogonal polar spaces, Forum Math. 16 (2004), no. 5, 663–669. 10.1515/form.2004.029Search in Google Scholar

[21] H. Lüneburg, Translation Planes, Springer, Berlin, 1980. 10.1007/978-3-642-67412-9Search in Google Scholar

[22] G. Marino and O. Polverino, On isotopisms and strong isotopisms of commutative presemifields, J. Algebraic Combin. 36 (2012), no. 2, 247–261. 10.1007/s10801-011-0334-0Search in Google Scholar

[23] G. Marino and O. Polverino, On the nuclei of a finite semifield, Theory and Applications of Finite Fields, Contemp. Math. 579, American Mathematical Society, Providence, (2012), 123–141. 10.1090/conm/579/11525Search in Google Scholar

[24] A. Maschietti, Symplectic translation planes, Lecture Notes of Seminario Interdisciplinare di Matematica. Vol. II, Università degli Studi della Basilicata, Potenza (2003), 101–148. Search in Google Scholar

[25] G. Menichetti, On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field, J. Algebra 47 (1977), no. 2, 400–410. 10.1016/0021-8693(77)90231-9Search in Google Scholar

[26] O. Polverino, Linear sets in finite projective spaces, Discrete Math. 310 (2010), no. 22, 3096–3107. 10.1016/j.disc.2009.04.007Search in Google Scholar

[27] Z. Zha, G. M. Kyureghyan and X. Wang, Perfect nonlinear binomials and their semifields, Finite Fields Appl. 15 (2009), no. 2, 125–133. 10.1016/j.ffa.2008.09.002Search in Google Scholar

[28] Y. Zhou and A. Pott, A new family of semifields with 2 parameters, Adv. Math. 234 (2013), 43–60. 10.1016/j.aim.2012.10.014Search in Google Scholar

Received: 2016-6-13
Revised: 2017-3-8
Published Online: 2017-8-15
Published in Print: 2018-3-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0133/html
Scroll to top button