Home Anharmonic solutions to the Riccati equation and elliptic modular functions
Article
Licensed
Unlicensed Requires Authentication

Anharmonic solutions to the Riccati equation and elliptic modular functions

  • Ahmed Sebbar EMAIL logo and Oumar Wone
Published/Copyright: August 5, 2017

Abstract

We study the irreducible algebraic equation

xn+a1xn-1++an=0,with n4,

on the differential field (𝔽=(t),δ=ddt). We assume that a root of the equation is a solution to the Riccati differential equation u+B0+B1u+B2u2=0, where B0, B1, B2 are in 𝔽.

We show how to construct a large class of polynomials as in the above algebraic equation, i.e., we prove that there exists a polynomial Fn(x,y)(x)[y] such that for almost T𝔽, the algebraic equation Fn(x,T)=0 is of the same type as the above stated algebraic equation. In other words, all its roots are solutions to the same Riccati equation. On the other hand, we give an example of a degree 3 irreducible polynomial equation satisfied by certain weight 2 modular forms for the subgroup Γ(2), whose roots satisfy a common Riccati equation on the differential field ((E2,E4,E6),ddτ), with Ei(τ) being the Eisenstein series of weight i. These solutions are related to a Darboux–Halphen system. Finally, we deal with the following problem: For which “potential” q(,) does the Riccati equation dYdz+Y2=q admit algebraic solutions over the differential field (,), with being the classical Weierstrass function? We study this problem via Darboux polynomials and invariant theory and show that the minimal polynomial Φ(x) of an algebraic solution u must have a vanishing fourth transvectant τ4(Φ)(x).


Communicated by Jan Bruinier


Acknowledgements

The authors would like to thank the anonymous referee for her/his comments and careful reading.

References

[1] L. Autonne, Sur certaines équations des quatrimès et cinquimès degrés, Bull. Soc. Math. France 28 (1900), 90–107. 10.24033/bsmf.623Search in Google Scholar

[2] L. Autonne, Sur les équations algébriques dont toutes les racines sont solutions d’une même équation de Riccati, J. Math. Pures Appl. (9) 6 (1900), 157–214. Search in Google Scholar

[3] F. Baldassarri, On second-order linear differential equations with algebraic solutions on algebraic curves, Amer. J. Math. 102 (1980), 517–535. 10.2307/2374114Search in Google Scholar

[4] F. Baldassarri and B. Dwork, On second-order linear differential equations with algebraic solutions, Amer. J. Math. 101 (1979), 42–76. 10.2307/2373938Search in Google Scholar

[5] F. Brioschi, Sopra una classe di forme binarie, Annali di Mat. (2) 8 (1877), 24–42. 10.1007/BF02420777Search in Google Scholar

[6] J. H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of Modular Forms. Lectures at a Summer School in Nordfjordeid, Norway, June 2004, Springer, Berlin, 2008. 10.1007/978-3-540-74119-0Search in Google Scholar

[7] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Darboux Bull. (2) 2 (1878), 60–96, 123–144, 151–200. Search in Google Scholar

[8] I. Dolgachev, Lectures on modular forms, preprint, www.math.lsa.umich.edu/~idolga/modular.pdfSearch in Google Scholar

[9] J. Drach, Sur la réduction de l’équation générale de Riccati, C. R. Acad. Sci. Paris 205 (1937), 700–704. Search in Google Scholar

[10] D. Duverney, K. Nishioka, K. Nishioka and L. Shiokawa, Transcendence of Jacobi’s theta series, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 9, 202–203. 10.3792/pjaa.72.202Search in Google Scholar

[11] F. G. Frobenius and L. Stickelberger, Über die Differentiation der elliptischen Funktionen nach den Perioden und Invarianten, J. Reine Angew. Math. 92 (1882), 311–327. 10.1515/crll.1882.92.311Search in Google Scholar

[12] E. Hille, Ordinary Differential Equations in the Complex Domain, John Wiley & Sons, New York, 1976. Search in Google Scholar

[13] C. Jordan, Cours d’Analyse de l’Ecole Polytechnique. Seconde Partie, Gauthiers-Villars, Paris, 1896. Search in Google Scholar

[14] F. Klein, Lectures on the Icosahedron and the Solution to Equations of Fifth Degree, Dover, New York, 1956. Search in Google Scholar

[15] F. Klein, Über lineare Differentialgleichungen, Math. Ann. 12 (1877), no. 2, 167–169. 10.1007/BF01442656Search in Google Scholar

[16] J. P. S. Kung and G.-C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 27–85. 10.1090/S0273-0979-1984-15188-7Search in Google Scholar

[17] K. Lamotke, Regular Solids and Isolated Singularities, Adv. Lect. Math., Friedrich Vieweg & Sohn, Braunschweig, 1986. 10.1007/978-3-322-91767-6Search in Google Scholar

[18] K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Aust. Math. Soc. 10 (1969), no. 3–4, 450–455. 10.1017/S1446788700007709Search in Google Scholar

[19] P. Olver, Classical Invariant Theory, London Math. Soc. Stud. Texts, Cambridge University Press, Cambridge, 1999. 10.1017/CBO9780511623660Search in Google Scholar

[20] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l’invitation de S. M. le Roi de Suède et de Norvège, A. Hermann, Paris, 1897. Search in Google Scholar

[21] E. Picard, Applications de la théorie des complexes linéaires à l’étude des surfaces et des courbes gauches, Ann. Sci. Éc. Norm. Supér. 2 (1877), no. 6, 342–343. 10.24033/asens.152Search in Google Scholar

[22] M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1983), no. 1, 215–229. 10.1090/S0002-9947-1983-0704611-XSearch in Google Scholar

[23] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159–184. Search in Google Scholar

[24] J. P. Serre, Cours d’arithmétique, Presses Universitaires de France, Paris, 1973. Search in Google Scholar

[25] M. F. Singer and M. Van Der Put, Galois Theory of Linear Differential Equations, Grundlehren Math. Wiss. 328, Springer, Berlin, 2003. 10.1007/978-3-642-55750-7Search in Google Scholar

[26] B. Van der Pol, On a non-linear partial differential equation satisfied by the logarithm derivative of the Jacobian theta functions, with arithmetical applications. I, II, Indag. Math. 13 (1951), 261–271, 272–284. 10.1016/S1385-7258(51)50037-9Search in Google Scholar

Received: 2017-2-6
Revised: 2017-5-9
Published Online: 2017-8-5
Published in Print: 2018-3-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2017-0025/html
Scroll to top button