Abstract
We study the irreducible algebraic equation
on the differential field
We show how to construct a large class of polynomials as in the above algebraic equation, i.e., we prove that there exists a polynomial
Acknowledgements
The authors would like to thank the anonymous referee for her/his comments and careful reading.
References
[1] L. Autonne, Sur certaines équations des quatrimès et cinquimès degrés, Bull. Soc. Math. France 28 (1900), 90–107. 10.24033/bsmf.623Search in Google Scholar
[2] L. Autonne, Sur les équations algébriques dont toutes les racines sont solutions d’une même équation de Riccati, J. Math. Pures Appl. (9) 6 (1900), 157–214. Search in Google Scholar
[3] F. Baldassarri, On second-order linear differential equations with algebraic solutions on algebraic curves, Amer. J. Math. 102 (1980), 517–535. 10.2307/2374114Search in Google Scholar
[4] F. Baldassarri and B. Dwork, On second-order linear differential equations with algebraic solutions, Amer. J. Math. 101 (1979), 42–76. 10.2307/2373938Search in Google Scholar
[5] F. Brioschi, Sopra una classe di forme binarie, Annali di Mat. (2) 8 (1877), 24–42. 10.1007/BF02420777Search in Google Scholar
[6] J. H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of Modular Forms. Lectures at a Summer School in Nordfjordeid, Norway, June 2004, Springer, Berlin, 2008. 10.1007/978-3-540-74119-0Search in Google Scholar
[7] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Darboux Bull. (2) 2 (1878), 60–96, 123–144, 151–200. Search in Google Scholar
[8] I. Dolgachev, Lectures on modular forms, preprint, www.math.lsa.umich.edu/~idolga/modular.pdfSearch in Google Scholar
[9] J. Drach, Sur la réduction de l’équation générale de Riccati, C. R. Acad. Sci. Paris 205 (1937), 700–704. Search in Google Scholar
[10] D. Duverney, K. Nishioka, K. Nishioka and L. Shiokawa, Transcendence of Jacobi’s theta series, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 9, 202–203. 10.3792/pjaa.72.202Search in Google Scholar
[11] F. G. Frobenius and L. Stickelberger, Über die Differentiation der elliptischen Funktionen nach den Perioden und Invarianten, J. Reine Angew. Math. 92 (1882), 311–327. 10.1515/crll.1882.92.311Search in Google Scholar
[12] E. Hille, Ordinary Differential Equations in the Complex Domain, John Wiley & Sons, New York, 1976. Search in Google Scholar
[13] C. Jordan, Cours d’Analyse de l’Ecole Polytechnique. Seconde Partie, Gauthiers-Villars, Paris, 1896. Search in Google Scholar
[14] F. Klein, Lectures on the Icosahedron and the Solution to Equations of Fifth Degree, Dover, New York, 1956. Search in Google Scholar
[15] F. Klein, Über lineare Differentialgleichungen, Math. Ann. 12 (1877), no. 2, 167–169. 10.1007/BF01442656Search in Google Scholar
[16] J. P. S. Kung and G.-C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 27–85. 10.1090/S0273-0979-1984-15188-7Search in Google Scholar
[17] K. Lamotke, Regular Solids and Isolated Singularities, Adv. Lect. Math., Friedrich Vieweg & Sohn, Braunschweig, 1986. 10.1007/978-3-322-91767-6Search in Google Scholar
[18] K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Aust. Math. Soc. 10 (1969), no. 3–4, 450–455. 10.1017/S1446788700007709Search in Google Scholar
[19] P. Olver, Classical Invariant Theory, London Math. Soc. Stud. Texts, Cambridge University Press, Cambridge, 1999. 10.1017/CBO9780511623660Search in Google Scholar
[20] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l’invitation de S. M. le Roi de Suède et de Norvège, A. Hermann, Paris, 1897. Search in Google Scholar
[21] E. Picard, Applications de la théorie des complexes linéaires à l’étude des surfaces et des courbes gauches, Ann. Sci. Éc. Norm. Supér. 2 (1877), no. 6, 342–343. 10.24033/asens.152Search in Google Scholar
[22] M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1983), no. 1, 215–229. 10.1090/S0002-9947-1983-0704611-XSearch in Google Scholar
[23] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159–184. Search in Google Scholar
[24] J. P. Serre, Cours d’arithmétique, Presses Universitaires de France, Paris, 1973. Search in Google Scholar
[25] M. F. Singer and M. Van Der Put, Galois Theory of Linear Differential Equations, Grundlehren Math. Wiss. 328, Springer, Berlin, 2003. 10.1007/978-3-642-55750-7Search in Google Scholar
[26] B. Van der Pol, On a non-linear partial differential equation satisfied by the logarithm derivative of the Jacobian theta functions, with arithmetical applications. I, II, Indag. Math. 13 (1951), 261–271, 272–284. 10.1016/S1385-7258(51)50037-9Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The variance of divisor sums in arithmetic progressions
- Characterizing Lie groups by controlling their zero-dimensional subgroups
- CM cycles on Kuga–Sato varieties over Shimura curves and Selmer groups
- Towards a Goldberg–Shahidi pairing for classical groups
- On the non-existence of cyclic splitting fields for division algebras
- Sequential motion planning algorithms in real projective spaces: An approach to their immersion dimension
- Very ampleness of the bicanonical line bundle on compact complex 2-ball quotients
- Anharmonic solutions to the Riccati equation and elliptic modular functions
- A non-homogeneous local Tb theorem for Littlewood–Paley g*λ-function with Lp-testing condition
- Saturation rank for finite group schemes: Finite groups and infinitesimal group schemes
- On symplectic semifield spreads of PG(5,q2), q odd
- From Freudenthal’s spectral theorem to projectable hulls of unital Archimedean lattice-groups, through compactifications of minimal spectra
- Golodness and polyhedral products for two-dimensional simplicial complexes
Articles in the same Issue
- Frontmatter
- The variance of divisor sums in arithmetic progressions
- Characterizing Lie groups by controlling their zero-dimensional subgroups
- CM cycles on Kuga–Sato varieties over Shimura curves and Selmer groups
- Towards a Goldberg–Shahidi pairing for classical groups
- On the non-existence of cyclic splitting fields for division algebras
- Sequential motion planning algorithms in real projective spaces: An approach to their immersion dimension
- Very ampleness of the bicanonical line bundle on compact complex 2-ball quotients
- Anharmonic solutions to the Riccati equation and elliptic modular functions
- A non-homogeneous local Tb theorem for Littlewood–Paley g*λ-function with Lp-testing condition
- Saturation rank for finite group schemes: Finite groups and infinitesimal group schemes
- On symplectic semifield spreads of PG(5,q2), q odd
- From Freudenthal’s spectral theorem to projectable hulls of unital Archimedean lattice-groups, through compactifications of minimal spectra
- Golodness and polyhedral products for two-dimensional simplicial complexes