Startseite Existence of mild solution of a class of nonlocal fractional order differential equation with not instantaneous impulses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence of mild solution of a class of nonlocal fractional order differential equation with not instantaneous impulses

  • Jayanta Borah und Swaroop Nandan Bora EMAIL logo
Veröffentlicht/Copyright: 11. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, we establish a set of sufficient conditions for the existence of mild solution of a class of fractional differential equations with not instantaneous impulses. The results are obtained by using Banach fixed point theorem and Krasnoselskii’s fixed point theorem. An example is presented for validation of result.

Acknowledgements

The first author is grateful to North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India for granting leave for three years and to Indian Institute of Technology Guwahati for providing opportunity to carry out research. Both authors are immensely grateful to the anonymous Reviewer and the Editor-in-Chief for the insightful comments which helped the authors to carry out the required revision.

References

[1] S. Abbas, M. Benchohra, M.A. Darwish, New stability results for partial fractional differential inclusions with not instanttaneous impulses. Fract. Calc. Appl. Anal. 18, No 1 (2015), 172–191; 10.1515/fca-2015-0012; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.Suche in Google Scholar

[2] R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19, No 2 (2016), 290–318; 10.1515/fca-2016-0017; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.Suche in Google Scholar

[3] R. Agarwal, S. Hristova, D. O’Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Franklin Inst. 354 (2017), 3097–3119.10.1016/j.jfranklin.2017.02.002Suche in Google Scholar

[4] R. Agarwal, D. O’Regan, Stability of Caputo fractional differential equations with non-instantaneous impulses. Commun. Appl. Anal. 20, No 1 (2016), 149–174.Suche in Google Scholar

[5] R. Agarwal, S. Hristova, D. O’Regan, Non-instantaneous impulses in Caputo fractional differential eqquations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 595–622; 10.1515/fca-2017-0032; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.Suche in Google Scholar

[6] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989.10.1142/0906Suche in Google Scholar

[7] M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlin. Anal.: Theory, Methods, Appl. 71, No 7 (2009), 2391–2396.10.1016/j.na.2009.01.073Suche in Google Scholar

[8] L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40, No 1 (1991), 11–19.10.1080/00036819008839989Suche in Google Scholar

[9] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, No 2 (1993), 630–637.10.1006/jmaa.1993.1373Suche in Google Scholar

[10] M. Fečkan, J.R. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-istantaneous impulses. Nonauton. Dyn. Syst. 1 (2014), 93–101.Suche in Google Scholar

[11] M. Fečkan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonl. Sci. Numer. Simulat. 17, No 7 (2012), 3050–3060.10.1016/j.cnsns.2011.11.017Suche in Google Scholar

[12] E. Hernández, D. O’Regan, On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141, No 5 (2013), 1641–1649.10.1090/S0002-9939-2012-11613-2Suche in Google Scholar

[13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.Suche in Google Scholar

[14] P. Kumar, D.N. Pandey, D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order. J. Nonl. Sci. Appl. 7, No 2 (2014), 102–114.10.22436/jnsa.007.02.04Suche in Google Scholar

[15] F. Li, J. Liang, H-K. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, No 2 (2012), 510–525.10.1016/j.jmaa.2012.02.057Suche in Google Scholar

[16] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York, 1993.Suche in Google Scholar

[17] G. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlin. Anal.: Theory, Methods Appl. 72, No 3 (2010), 1604–1615.10.1016/j.na.2009.08.046Suche in Google Scholar

[18] G.M. N’Guérékata, A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlin. Anal.: Theory, Methods Appl. 70, No 5 (2009),1873–1876.10.1016/j.na.2008.02.087Suche in Google Scholar

[19] M. Pierri, D. O’Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, No 12 (2013), 6743–6749.10.1016/j.amc.2012.12.084Suche in Google Scholar

[20] I. Podlubny, Fractional Differential Equations. Academic Press, 1999.Suche in Google Scholar

[21] C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces. Adv. Differ. Equ. 2013, No 1 (2013).10.1186/1687-1847-2013-291Suche in Google Scholar

[22] A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations. World Scientific,1995.10.1142/2892Suche in Google Scholar

[23] G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlin. Anal.: Theory, Methods Appl. 74, No(2011), 792–804.10.1016/j.na.2010.09.030Suche in Google Scholar

[24] J. Wang, M. Fečkan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations. Dynam. Part. Differ. Eq. 8, No 4 (2011), 345–361.10.4310/DPDE.2011.v8.n4.a3Suche in Google Scholar

[25] J. Wang, A.G. Ibrahim, M. Fečkan, Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comput. 257 (2015), 103–118.10.1016/j.amc.2014.04.093Suche in Google Scholar

[26] J. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput. 46, No 1-2 (2014), 321–334.10.1007/s12190-013-0751-4Suche in Google Scholar

[27] J. Wang, Y. Zhou, M. Fečkan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations. Comput. Math. Appl. 64, No 10 (2012), 3008–3020.10.1016/j.camwa.2011.12.064Suche in Google Scholar

[28] J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242 (2014), 649–657.10.1016/j.amc.2014.06.002Suche in Google Scholar

[29] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations. Nonlin. Anal.: RWA. 11, No 5 (2010), 4465–4475.10.1016/j.nonrwa.2010.05.029Suche in Google Scholar

Received: 2017-08-17
Revised: 2019-02-19
Published Online: 2019-05-11
Published in Print: 2019-04-24

© 2019 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0029/html?lang=de
Button zum nach oben scrollen