Startseite Semi-fractional diffusion equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Semi-fractional diffusion equations

  • Peter Kern EMAIL logo , Svenja Lage und Mark M. Meerschaert
Veröffentlicht/Copyright: 11. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is well known that certain fractional diffusion equations can be solved by the densities of stable Lévy motions. In this paper we use the classical semigroup approach for Lévy processes to define semi-fractional derivatives, which allows us to generalize this statement to semistable Lévy processes. A Fourier series approach for the periodic part of the corresponding Lévy exponents enables us to represent semi-fractional derivatives by a Grünwald-Letnikov type formula. We use this formula to calculate semi-fractional derivatives and solutions to semi-fractional diffusion equations numerically. In particular, by means of the Grünwald-Letnikov type formula we provide a numerical algorithm to compute semistable densities.

Acknowledgements

M. Meerschaert was partially supported by ARO MURI Grant W911NF-15-1-0562 and USA National Science Foundation Grants DMS-1462156 and EAR-1344280.

References

[1] G.E. Andrews, R. Askey, R. Roy, Special Functions. Cambridge University Press, Cambridge (1999).10.1017/CBO9781107325937Suche in Google Scholar

[2] H. Bateman and Eds., Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York (1954).Suche in Google Scholar

[3] R. Chaudhuri, Non-Gaussian Semi-Stable Distributions and Their Statistical Applications. Ph.D. Thesis, University of North Carolina, Chapel Hill (2014).Suche in Google Scholar

[4] A. Chavez, A fractional diffusion equation to describe Lévy flights. Phys. Lett. A239 (2000), 13–16.10.1016/S0375-9601(97)00947-XSuche in Google Scholar

[5] P. Flajolet, R. Sedgewick, Analytic Combinatorics. Cambridge University Press, Cambridge (2009).10.1017/CBO9780511801655Suche in Google Scholar

[6] G.B. Folland, Fourier Analysis and Its Applications. Wadsworth & Brooks/Cole, London (1992).Suche in Google Scholar

[7] T. Huillet, A. Porzio, M. Ben Alaya, On Lévy stable and semistable distributions. Fractals9 (2001), 347–364.10.1142/S0218348X01000786Suche in Google Scholar

[8] J.F. Kelly, C.G. Li, M.M. Meerschaert, Anomalous diffusion with ballistic scaling: A new fractional derivative. J. Comp. Appl. Math. 339 (2018), 161–178.10.1016/j.cam.2017.11.012Suche in Google Scholar

[9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies 204, Elsevier, Amsterdam (2006).Suche in Google Scholar

[10] A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory71 (2011), 583–600.10.1007/s00020-011-1918-8Suche in Google Scholar

[11] Y. Luchko, M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695; 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.Suche in Google Scholar

[12] A. Martin-Löf, A limit theorem which clarifies the “Petersburg paradox”. J. Appl. Probab. 22 (1985), 634–643.10.2307/3213866Suche in Google Scholar

[13] M.M. Meerschaert, H.P. Scheffler, Limit Distributions for Sums of Independent Random Vectors. Wiley, New York (2001).Suche in Google Scholar

[14] M.M. Meerschaert, H.P. Scheffler, Semistable Lévy motion. Fract. Calc. Appl. Anal. 5, No 1 (2002), 27–54.Suche in Google Scholar

[15] M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012).10.1515/9783110258165Suche in Google Scholar

[16] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numerical Math. 56 (2006), 80–90.10.1016/j.apnum.2005.02.008Suche in Google Scholar

[17] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.10.1016/S0370-1573(00)00070-3Suche in Google Scholar

[18] A. Neamaty, M. Yadollahzadeh, R. Darzi, On fractional differential equation with complex order. Progr. Fract. Differ. Appl. 1, No 3 (2015), 223–227.Suche in Google Scholar

[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach, London (1993).Suche in Google Scholar

[20] T. Sandev, A. Chechkin, H. Kantz, R. Metzler, Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal. 18, No 4 (2015), 1006–1038; 10.1515/fca-2015-0059; https://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.Suche in Google Scholar

[21] T. Sandev, R. Metzler, A. Chechkin, From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21, No 1 (2018), 10–28; 10.1515/fca-2018-0002; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml.Suche in Google Scholar

[22] K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999).Suche in Google Scholar

[23] D. Sornette, Discrete-scale invariance and complex dimensions. Physics Reports297 (1998), 239–270.10.1016/S0370-1573(97)00076-8Suche in Google Scholar

[24] D. Sornette, Why Stock Markets Crash: Critical Phenomena in Complex Financial Systems. Princeton University Press, Princeton (2017).10.23943/princeton/9780691175959.001.0001Suche in Google Scholar

Received: 2018-06-02
Published Online: 2019-05-11
Published in Print: 2019-04-24

© 2019 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0021/html
Button zum nach oben scrollen