Startseite Structure factors for generalized grey Browinian motion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structure factors for generalized grey Browinian motion

  • José L. da Silva EMAIL logo und Ludwig Streit
Veröffentlicht/Copyright: 11. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we investigate the form factors of paths for a class of non Gaussian processes. These processes are characterized in terms of the Mittag-Leffler function. In particular, we obtain a closed analytic form for the form factors, the Debye function, and can study their asymptotic decay.

Acknowledgement

We would like to express our gratitude for the hospitality of our colleagues and friends Victoria Bernido and Christopher Bernido during a very pleasant stay at Jagna during the 8th Jagna International Workshop: “Structure, Function, and Dynamics: from nm to Gm”, January 4-7, 2017. Financial support from FCT – Fundação para a Ciência e a Tecnologia through the project UID/MAT/04674/2013 (CIMA Universidade da Madeira) and by the Humboldt Foundation are gratefully acknowledged.

References

[1] R. P. Agarwal, A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris236, No 21 (1953), 2031–2032.Suche in Google Scholar

[2] Y. M. Berezansky and Y. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Vol. 1. Kluwer Academic Publishers, Dordrecht (1995).10.1007/978-94-011-0509-5Suche in Google Scholar

[3] B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15 (1964), 239–341.Suche in Google Scholar

[4] R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer (2014).10.1007/978-3-662-43930-2Suche in Google Scholar

[5] I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, 4. Academic Press, New York and London (1968).Suche in Google Scholar

[6] M. Grothaus and F. Jahnert, Mittag-Leffler Analysis II : Application to the fractional heat equation. J. Funct. Anal. 270, No 7 (2016), 2732–2768; 10.1016/j.jfa.2016.01.018.Suche in Google Scholar

[7] M. Grothaus, F. Jahnert, F. Riemann, and J. L. Silva, Mittag-Leffler Analysis I: Construction and characterization. J. Funct. Anal. 268, No 7 (2015), 1876–1903; 10.1016/j.jfa.2014.12.007.Suche in Google Scholar

[8] B. Hammouda, Probing nanoscale structures-the sans toolbox. Available online at: http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf (2016).Suche in Google Scholar

[9] T. Hida, Stationary Stochastic Processes. Princeton University Press (1970).Suche in Google Scholar

[10] T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit, White Noise. An Infinite Dimensional Calculus. Kluwer Academic Publishers, Dordrecht (1993).10.1007/978-94-017-3680-0Suche in Google Scholar

[11] A. A. Kilbas, M. Saigo, and J. J. Trujillo, On the generalized Wright function. Fract. Calc. Appl. Anal. 5, No 4 (2002), 437–460.Suche in Google Scholar

[12] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006).Suche in Google Scholar

[13] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010).10.1142/p614Suche in Google Scholar

[14] F. Mainardi, A. Mura, and G. Pagnini, The M-Wright function in time-fractional diffusion processes : A tutorial survey. Int. J. Differential Equ. 2010 (2010), Art. ID 104505, 1–29;10.1155/2010/104505Suche in Google Scholar

[15] F. Mainardi and G. Pagnini, The role of the Fox–Wright functions in fractional sub-diffusion of distributed order. J. Comput. Anal. Appl. 207 (2007), 245–257; 10.1016/j.cam.2006.10.014.Suche in Google Scholar

[16] F. Mainardi, G. Pagnini, and R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459.Suche in Google Scholar

[17] A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists. Springer (2008).10.1007/978-0-387-75894-7Suche in Google Scholar

[18] A. Mentrelli and G. Pagnini, Front propagation in anomalous diffusive media governed by time-fractional diffusion. J. Comput. Phys. 293 (2015), 427–441; 10.1016/j.jcp.2014.12.015.Suche in Google Scholar

[19] G. M. Mittag-Leffler, Sur la nouvelle fonction eα (x). CR Acad. Sci. Paris137, No 2 (1903), 554–558; 10.1007/BF02403200.Suche in Google Scholar

[20] G. M. Mittag-Leffler, Sopra la funzione eα(x). Rend. Accad. Lincei5, No 13 (1904), 3–5.Suche in Google Scholar

[21] G. M. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Math. 29, No 1 (1905), 101–181.10.1007/BF02403200Suche in Google Scholar

[22] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16, No 2 (2013), 436–53; 10.2478/s13540-013-0027-6; https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.Suche in Google Scholar

[23] G. Pagnini, and P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 2 (2016), 408–4406; 10.1515/fca-2016-0022; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.Suche in Google Scholar

[24] H. Pollard, The completely monotonic character of the Mittag-Leffler function Ea(x). Bull. Amer. Math. Soc. 54 (1948), 1115–1116.10.1090/S0002-9904-1948-09132-7Suche in Google Scholar

[25] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993).Suche in Google Scholar

[26] W. R. Schneider, Grey noise. In: Stochastic Processes, Physics and Geometry. World Scientific Publishing, Teaneck, NJ (1990), 676–681.Suche in Google Scholar

[27] W. R. Schneider, Grey noise. In: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge University Press, Cambridge (1992), 261–282.Suche in Google Scholar

[28] I. Teraoka, Polymer Solutions: An Introduction to Physical Properties. Wiley, New York (2002).10.1002/0471224510Suche in Google Scholar

Received: 2017-08-12
Revised: 2019-01-07
Published Online: 2019-05-11
Published in Print: 2019-04-24

© 2019 Diogenes Co., Sofia

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0024/html
Button zum nach oben scrollen