Home Structure factors for generalized grey Browinian motion
Article
Licensed
Unlicensed Requires Authentication

Structure factors for generalized grey Browinian motion

  • José L. da Silva EMAIL logo and Ludwig Streit
Published/Copyright: May 11, 2019

Abstract

In this paper we investigate the form factors of paths for a class of non Gaussian processes. These processes are characterized in terms of the Mittag-Leffler function. In particular, we obtain a closed analytic form for the form factors, the Debye function, and can study their asymptotic decay.

Acknowledgement

We would like to express our gratitude for the hospitality of our colleagues and friends Victoria Bernido and Christopher Bernido during a very pleasant stay at Jagna during the 8th Jagna International Workshop: “Structure, Function, and Dynamics: from nm to Gm”, January 4-7, 2017. Financial support from FCT – Fundação para a Ciência e a Tecnologia through the project UID/MAT/04674/2013 (CIMA Universidade da Madeira) and by the Humboldt Foundation are gratefully acknowledged.

References

[1] R. P. Agarwal, A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris236, No 21 (1953), 2031–2032.Search in Google Scholar

[2] Y. M. Berezansky and Y. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis, Vol. 1. Kluwer Academic Publishers, Dordrecht (1995).10.1007/978-94-011-0509-5Search in Google Scholar

[3] B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15 (1964), 239–341.Search in Google Scholar

[4] R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer (2014).10.1007/978-3-662-43930-2Search in Google Scholar

[5] I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, 4. Academic Press, New York and London (1968).Search in Google Scholar

[6] M. Grothaus and F. Jahnert, Mittag-Leffler Analysis II : Application to the fractional heat equation. J. Funct. Anal. 270, No 7 (2016), 2732–2768; 10.1016/j.jfa.2016.01.018.Search in Google Scholar

[7] M. Grothaus, F. Jahnert, F. Riemann, and J. L. Silva, Mittag-Leffler Analysis I: Construction and characterization. J. Funct. Anal. 268, No 7 (2015), 1876–1903; 10.1016/j.jfa.2014.12.007.Search in Google Scholar

[8] B. Hammouda, Probing nanoscale structures-the sans toolbox. Available online at: http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf (2016).Search in Google Scholar

[9] T. Hida, Stationary Stochastic Processes. Princeton University Press (1970).Search in Google Scholar

[10] T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit, White Noise. An Infinite Dimensional Calculus. Kluwer Academic Publishers, Dordrecht (1993).10.1007/978-94-017-3680-0Search in Google Scholar

[11] A. A. Kilbas, M. Saigo, and J. J. Trujillo, On the generalized Wright function. Fract. Calc. Appl. Anal. 5, No 4 (2002), 437–460.Search in Google Scholar

[12] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006).Search in Google Scholar

[13] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010).10.1142/p614Search in Google Scholar

[14] F. Mainardi, A. Mura, and G. Pagnini, The M-Wright function in time-fractional diffusion processes : A tutorial survey. Int. J. Differential Equ. 2010 (2010), Art. ID 104505, 1–29;10.1155/2010/104505Search in Google Scholar

[15] F. Mainardi and G. Pagnini, The role of the Fox–Wright functions in fractional sub-diffusion of distributed order. J. Comput. Anal. Appl. 207 (2007), 245–257; 10.1016/j.cam.2006.10.014.Search in Google Scholar

[16] F. Mainardi, G. Pagnini, and R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459.Search in Google Scholar

[17] A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists. Springer (2008).10.1007/978-0-387-75894-7Search in Google Scholar

[18] A. Mentrelli and G. Pagnini, Front propagation in anomalous diffusive media governed by time-fractional diffusion. J. Comput. Phys. 293 (2015), 427–441; 10.1016/j.jcp.2014.12.015.Search in Google Scholar

[19] G. M. Mittag-Leffler, Sur la nouvelle fonction eα (x). CR Acad. Sci. Paris137, No 2 (1903), 554–558; 10.1007/BF02403200.Search in Google Scholar

[20] G. M. Mittag-Leffler, Sopra la funzione eα(x). Rend. Accad. Lincei5, No 13 (1904), 3–5.Search in Google Scholar

[21] G. M. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Math. 29, No 1 (1905), 101–181.10.1007/BF02403200Search in Google Scholar

[22] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16, No 2 (2013), 436–53; 10.2478/s13540-013-0027-6; https://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.Search in Google Scholar

[23] G. Pagnini, and P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 2 (2016), 408–4406; 10.1515/fca-2016-0022; https://www.degruyter.com/view/j/fca.2016.19.issue-2/issue-files/fca.2016.19.issue-2.xml.Search in Google Scholar

[24] H. Pollard, The completely monotonic character of the Mittag-Leffler function Ea(x). Bull. Amer. Math. Soc. 54 (1948), 1115–1116.10.1090/S0002-9904-1948-09132-7Search in Google Scholar

[25] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993).Search in Google Scholar

[26] W. R. Schneider, Grey noise. In: Stochastic Processes, Physics and Geometry. World Scientific Publishing, Teaneck, NJ (1990), 676–681.Search in Google Scholar

[27] W. R. Schneider, Grey noise. In: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge University Press, Cambridge (1992), 261–282.Search in Google Scholar

[28] I. Teraoka, Polymer Solutions: An Introduction to Physical Properties. Wiley, New York (2002).10.1002/0471224510Search in Google Scholar

Received: 2017-08-12
Revised: 2019-01-07
Published Online: 2019-05-11
Published in Print: 2019-04-24

© 2019 Diogenes Co., Sofia

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0024/html
Scroll to top button