Startseite On representation and interpretation of Fractional calculus and fractional order systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On representation and interpretation of Fractional calculus and fractional order systems

  • Juan Paulo García-Sandoval EMAIL logo
Veröffentlicht/Copyright: 11. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work a relationship between Fractional calculus (FC) and the solution of a first order partial differential equation (FOPDE) is suggested. With this relationship and considering an extra dimension, an alternative representation for fractional derivatives and integrals is proposed. This representation can be applied to fractional derivatives and integrals defined by convolution integrals of the Volterra type, i.e. the Riemann-Liouville and Caputo fractional derivatives and integrals, and the Riesz and Feller potentials, and allows to transform fractional order systems in FOPDE that only contains integer-order derivatives. As a consequence of considering the extra dimension, the geometric interpretation of fractional derivatives and integrals naturally emerges as the area under the curve of a characteristic trajectory and as the direction of a tangent characteristic vector, respectively. Besides this, a new physical interpretation is suggested for the fractional derivatives, integrals and dynamical systems.

MSC 2010: 26A33; 34A08; 35F9; 45D05

References

[1] A. S. Balankin, J. Bory-Reyes, M. Shapiro, Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric. Physica A. 444 (2016), 345–359; 10.1016/j.physa.2015.10.035.Suche in Google Scholar

[2] R. Courant, D. Hilbert, Methods of Mathematical Physics, Volume II. Wiley, USA (1962).10.1063/1.3057861Suche in Google Scholar

[3] K. Diethelm, N. Ford, Analysis of fractional differential equations. J. of Math. Anal. Appl. 265, No 2 (2002), 229–248; 10.1006/jmaa.2000.7194.Suche in Google Scholar

[4] M. Duff, M theory (The theory formely known as strings). Int. J. Mod. Phys. A. 11, No 32 (1996), 5623–5641; 10.1142/s0217751x96002583.Suche in Google Scholar

[5] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics. Elsevier, USA (2017).10.1016/B978-0-12-804248-9.50002-4Suche in Google Scholar

[6] S. Hadid, J. Alshamani, Lyapunov stability of differential equations of non-integer order. Arab. J. Math. 7/, No 1–2 (1986), 5–17.Suche in Google Scholar

[7] C. Ionescu, A. Lopes, D. Copot, J. Machado, J. Bates, The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. 51 (2017), 141–159; 10.1016/j.cnsns.2017.04.001.Suche in Google Scholar

[8] F. Izsák, B. J. Szekeres, Models of space-fractional diffusion: A critical review. Appl. Math. Lett. 71 (2017), 38–43; 10.1016/j.aml.2017.03.006.Suche in Google Scholar

[9] M. Lighthill, G. Whitham, On kinematic waves I. Flood movement in long rivers. P. Roy. Soc. A-Math. Phys. 229, No 1178 (1955), 281–316; 10.1098/rspa.1955.0088.Suche in Google Scholar

[10] M. J. Lighthill, G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. A - Math. Phys. 229, No 1178 (1955), 317–345; 10.1098/rspa.1955.0089.Suche in Google Scholar

[11] J. A. T. Machado, A probabilistic interpretation of the fractional-order differentiation. Fract. Calc. Appl. Anal. 6, No 1 (2003), 73–80.Suche in Google Scholar

[12] J. A. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci./16, No 3 (2011), 1140–1153; 10.1016/j.cnsns.2010.05.027.Suche in Google Scholar

[13] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367–386; available at: https://arxiv.org/pdf/math/0110241.pdf.Suche in Google Scholar

[14] P. Shah, S. Agashe, Review of fractional PID controller. Mechatronics38/ (2016), 29–41; 10.1016/j.mechatronics.2016.06.005.Suche in Google Scholar

[15] L. Susskind, The world as a hologram. J. Math. Phys. 36, No 11 (1995), 6377–6396; 10.1063/1.531249.Suche in Google Scholar

[16] V. Uchaikin, R. Sibatov, Fractional derivatives on cosmic scales. Chaos Soliton Fract. 102/ (2017), 197–209; 10.1016/j.chaos.2017.04.023.Suche in Google Scholar

[17] T. Vistarini, Holographic space and time: Emergent in what sense? Stud. Hist. Philos. M. P. 59/ (2016), 126–135; 10.1016/j.shpsb.2016.07.002.Suche in Google Scholar

[18] Y. Zhang, H. Sun, H. H. Stowell, M. Zayernouri, S. E. Hansen, A review of applications of fractional calculus in earth system dynamics. Chaos Soliton Fract. 102 (2017), 29–46; 10.1016/j.chaos.2017.03.051.Suche in Google Scholar

Received: 2017-05-25
Revised: 2019-03-07
Published Online: 2019-05-11
Published in Print: 2019-04-24

© 2019 Diogenes Co., Sofia

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0031/html
Button zum nach oben scrollen