Startseite Well-posedness of fractional degenerate differential equations in Banach spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Well-posedness of fractional degenerate differential equations in Banach spaces

  • Shangquan Bu EMAIL logo und Gang Cai
Veröffentlicht/Copyright: 11. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the well-posedness of the fractional degenerate differential equation: Dα (Mu)(t) + cDβ(Mu)(t) = Au(t) + f(t), (0 ≤ t ≤ 2π) on Lebesgue-Bochner spaces Lp(𝕋; X) and periodic Besov spaces Bp,qs (𝕋; X), where A and M are closed linear operators in a complex Banach space X satisfying D(A) ⊂ D(M), c ∈ ℂ and 0 < β < α are fixed. Using known operator-valued Fourier multiplier theorems, we give necessary and sufficient conditions for Lp-well-posedness and Bp,qs-well-posedness of above equation.

Acknowledgements

This work was supported by the NSF of China (Grant No. 11571194, 11731010, 11771063), the Natural Science Foundation of Chongqing (Grant No. cstc2017jcyjAX0006), Science and Technology Project of Chongqing Education Committee (Grant No. KJ1703041), the University Young Core Teacher Foundation of Chongqing (Grant No. 020603011714), the Talent Project of Chongqing Normal University (Grant No. 02030307-00024). G. Cai is the corresponding author.

References

[1] W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311–343.10.1007/s002090100384Suche in Google Scholar

[2] W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. 47 (2004), 15–33.10.1017/S0013091502000378Suche in Google Scholar

[3] J. Bourgain, Some remarks on Banach spaces in which martingale differences sequences are unconditional. Arkiv Math. 21 (1983), 163–168.10.1007/BF02384306Suche in Google Scholar

[4] J. Bourgain, A Hausdorff-Young inequality for B-convex Banach spaces. Pacific J. Math. 101 (1982), 255–262.10.2140/pjm.1982.101.255Suche in Google Scholar

[5] S. Bu, Well-posedness of equations with fractional derivative. Acta Math. Sinica (English Ser.)26, No 7 (2010), 1223–1232.10.1007/s10114-010-9231-zSuche in Google Scholar

[6] S. Bu and G. Cai, Well-posedness of degenerate differential equations with fractional derivative in vector-valued functional spaces. Math. Nachr. 290, No 5-6 (2017), 726–737.10.1002/mana.201500481Suche in Google Scholar

[7] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces. Ser. Pure and Appl. Math. 215, Dekker, New York-Basel-Hong Kong (1999).10.1201/9781482276022Suche in Google Scholar

[8] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer, Berlin (1991).10.1007/978-3-642-20212-4Suche in Google Scholar

[9] C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces. Studia Math. 202, No 1 (2011), 49–63.10.4064/sm202-1-3Suche in Google Scholar

[10] C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. Proc. Edinb. Math. Soc. 56, No 3 (2013), 853–871.10.1017/S0013091513000606Suche in Google Scholar

[11] C. Lizama and M. Pilar Velasco, Weighted bounded solutions for a class of nonlinear fractional equations. Fract. Calc. Appl. Anal. 19, No 4 (2016), 1010–1030; 10.1515/fca-2016-0055; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xmlSuche in Google Scholar

[12] C. Martinez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators. Elsevier, Ser. North-Holland Math. Studies 187 (2001).Suche in Google Scholar

[13] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de 1n. C. R. Acad. Sci. Paris277, No A (1) (1973), 991–994.Suche in Google Scholar

[14] V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation. Studia Math. 215 (2013), 195–219.10.4064/sm215-3-1Suche in Google Scholar

[15] A. Zygmund, Trigonometric Series, Vol. II. Cambridge University Press, Cambridge (1959).Suche in Google Scholar

Received: 2017-10-18
Revised: 2018-12-27
Published Online: 2019-05-11
Published in Print: 2019-04-24

© 2019 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2019-0023/pdf
Button zum nach oben scrollen