Home Mittag-Leffler function and fractional differential equations
Article
Licensed
Unlicensed Requires Authentication

Mittag-Leffler function and fractional differential equations

  • Katarzyna Górska EMAIL logo , Ambra Lattanzi and Giuseppe Dattoli
Published/Copyright: March 13, 2018

Abstract

We adopt a procedure of operational-umbral type to solve the (1 + 1)-dimensional fractional Fokker-Planck equation in which time fractional derivative of order α (0 < α < 1) is in the Riemann-Liouville sense. The technique we propose merges well documented operational methods to solve ordinary FP equation and a redefinition of the time by means of an umbral operator. We show that the proposed method allows significant progress including the handling of operator ordering.

Acknowledgments

The authors thanks Prof. Andrzej Horzela and Dr. Silvia Liccardi for helpful discussion and suggestions.

K.G and A.L. were supported by the NCN, OPUS-12, Program No. UMO-2016/23/B/ST3/01714. Moreover, K.G. thanks for support from MNiSW (Poland), Iuventus Plus 2015-2016, Program No. IP2014 013073.

References

[1] S.T. Ali, K. Górska, A. Horzela, F.H. Szafraniec, Squeezed States and Hermite polynomials in a complex variable. J. Math. Phys. 55 (2014), Art. # 012107 (11 pp).10.1063/1.4861932Search in Google Scholar

[2] D. Babusci, G. Dattoli, K. Górska, K.A. Penson, Lacunary generating functions for the Laguerre polynomials. Séminaire Lotharingien de Combinatoire76 (2017), Art.# B76b (19 pp).Search in Google Scholar

[3] P. Blasiak, A. Horzela, K.A. Penson, G.H.E. Duchamp, A.I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials. Phys. Lett. A338, No 2 (2005), 108–116.10.1016/j.physleta.2005.02.028Search in Google Scholar

[4] E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Special Topics193 (2011), 161–171.10.1140/epjst/e2011-01388-0Search in Google Scholar

[5] F. Ciocci, G. Dattoli, A. Torre, A. Renieri, Insertion Devises for Synchrotron Radiation and Free Electron Laser. World Scientific, Singapore (2000).10.1142/4066Search in Google Scholar

[6] G. Dattoli, Operational methods, fractional operators and special polynomials. Appl. Math. Comput. 141 (2003), 151–159.10.1016/S0096-3003(02)00329-6Search in Google Scholar

[7] G. Dattoli, J.C. Gallardo, A. Torre, An algebraic view to the operatorial ordering and its applications to optics. Riv. Nuovo Cim. 11, No 11 (1988), 1–79.10.1007/BF02724503Search in Google Scholar

[8] G. Dattoli, B. Germano, P.E. Ricci, Comments on monomiality, ordinary polynomials and associated bi-orthogonal functions. Appl. Math. Comput. 154 (2004), 219–227.10.1016/S0096-3003(03)00705-7Search in Google Scholar

[9] G. Dattoli, K. Górska, A. Horzela, S. Licciardi, R.M. Pidatella, Comments on the properties of Mittag-Leffler function. arXiv: 1707.01135 (2017).Search in Google Scholar

[10] G. Dattoli, S. Khan, P.E. Ricci, On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case. Integr. Transf. Spec. Fun. 19, No 1 (2008), 1–9.10.1080/10652460701358984Search in Google Scholar

[11] G. Dattoli, S. Licciardi and R.M. Pidatella, Theory of generalized trigonometric functions: from Laguerre to Airy forms. arXiv:1702.08520v1 (2017).10.1016/j.jmaa.2018.07.044Search in Google Scholar

[12] G. Dattoli, P.L. Ottaviviani, A. Torre, L. Vázquez, Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cim. 20, No 2 (1997), 1–133.10.1007/BF02907529Search in Google Scholar

[13] G. Dattoli, H.M. Srivastava, K.V. Zhukovsky, A new family of integral transforms and their applications. Integr. Transf. Spec. Fun. 17, No 1 (2006), 31–37.10.1080/10652460500389081Search in Google Scholar

[14] M.M. Dzherbashyan, Integral Transforms and Representations of Functions in Complex Domain (in Russian). Nauka, Moscow (1966).Search in Google Scholar

[15] R. Garrappa, M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39 (2013), 205–225.10.1007/s10444-012-9274-zSearch in Google Scholar

[16] I.M. Gessel, P. Jayawant, A triple lacunary generating function for Hermite polynomials. Electron. J. Comb. 12, No 1 (2005), R30 (14pp).10.37236/1927Search in Google Scholar

[17] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler functions. Related Topics and Applications. Springer-Verlag, Berlin (2014).10.1007/978-3-662-43930-2Search in Google Scholar

[18] R. Gorenflo, F. Mainardi, Fractional calculus and stable probability distributions. Archives of Mechanics50, No 30 (1998), 377–388.Search in Google Scholar

[19] K. Górska, A. Horzela, K.A. Penson, G. Dattoli, The higher-order heattype equations via signed Lévy stable and generalized Airy functions. J. Phys. A: Math. Theor. 46 (2013), # 425001 (16pp).10.1088/1751-8113/46/42/425001Search in Google Scholar

[20] K. Górska, A. Horzela, K.A. Penson, G. Dattoli, G.H.E. Duchamp, The stretched exponential behavior and its underlying dynamics. The phenomenological approach. Fract. Calc. Appl. Anal. 20, No 1 (2017), 260–283; 10.1515/fca-2017-0014; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.Search in Google Scholar

[21] K. Górska, K.A. Penson, D. Babusci, G. Dattoli, G.H.E. Duchamp, Operator solutions for fractional Fokker-Planck equations. Phys. Rev. E85 (2012), # 031138 (4 pp).10.1103/PhysRevE.85.031138Search in Google Scholar

[22] I.S. Gradhteyn, I.M. Ryzhik, Table of Integrals, Series and Products. 7th Ed., Academic Press (2007).Search in Google Scholar

[23] T. Haimo, C. Market, A representation theory for solutions of a higher order heat equation, I. J. Math. Anal. Appl. 168 (1992), 89–107.10.1016/0022-247X(92)90191-FSearch in Google Scholar

[24] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011), Article ID 298628 (51 pp).10.1155/2011/298628Search in Google Scholar

[25] K.A. Penson, P. Blasiak, G.H.E. Duchamp, A. Horzela, A.I. Solomon, On certain non-unique solutions of the Stieltjes moment problem, Dis-crete. Math. Theor. Comp. Sci. 12, No 2 (2010), 295–306.10.46298/dmtcs.507Search in Google Scholar

[26] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applicationsof Fractional Differential Equations. Elsevier, Amsterdam (2006).Search in Google Scholar

[27] Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Frac. Calc. Appl. Anal. 15, No 1 (2012), 141–160; 10.2478/s13540-012-0010-7; https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.Search in Google Scholar

[28] Y. Luchko, F. Mainardi, Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Centr. Eur. J. Phys11 (2013), 666–675.10.2478/s11534-013-0247-8Search in Google Scholar

[29] M. Magdziarz, A. Weron, K. Weron, Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation. Phys. Rev. E75 (2007), # 016708 (6 pp).10.1103/PhysRevE.75.016708Search in Google Scholar

[30] M. Magdziarz, T. Zorawik, Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space-time-dependent coefficients. Proc. Amer. Math. Soc. 144 (2016), 1767–1778.10.1090/proc/12856Search in Google Scholar

[31] F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293 (2015), 70–80.10.1016/j.jcp.2014.08.006Search in Google Scholar

[32] F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations. arXiv:0704.0320 (2007).Search in Google Scholar

[33] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.10.1016/S0370-1573(00)00070-3Search in Google Scholar

[34] I. Podlubny, Fractional Differential Equations. Ser. Mathematics and Science and Engineering, Vol. 198, Academic Press, San Diego (1999).Search in Google Scholar

[35] K.A. Penson and K. Górska, Exact and explicit probability densities for one-sided Lévy stable distributions. Phys. Rev. Lett. 105 (2010), # 210604 (4 pp).10.1103/PhysRevLett.105.210604Search in Google Scholar PubMed

[36] K.A. Penson, K. Górska, On the properties of Laplace transform originating from one-sided Lévy stable laws. J. Phys. A: Math. Theor. 49 (2016), # 065201 (10 pp).10.1088/1751-8113/49/6/065201Search in Google Scholar

[37] H. Pollard, The representation of e–xλ as a Laplace integral. Bull. Amer. Math. Soc. 52 (1946), 908–910.10.1090/S0002-9904-1946-08672-3Search in Google Scholar

[38] Y. Povstenko, T. Kyrylych, Two approaches to obtaining the space-time fractional advection-diffusion equation. Entropy19 (2017), Art. # 297 (19 pp).10.3390/e19070297Search in Google Scholar

[39] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series. Vol. 1. Elementary Functions. Gordon and Breach, Amsterdam (1998).Search in Google Scholar

[40] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series. Vol. 2. Special Functions. Gordon and Breach, Amsterdam (1998).Search in Google Scholar

[41] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach, Amsterdam (2003).Search in Google Scholar

[42] S. Roman, The Umbral Calculus. Dover Publications Inc., New York (1984).Search in Google Scholar

[43] P.C. Rosenbloom, D.V. Widder, Expansions in terms of heat polynmials and associated functions. Trans. Amer. Math. Soc. 92 (1959), 220–266.10.1090/S0002-9947-1959-0107118-2Search in Google Scholar

[44] G.-C. Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42 (1973), 684–760.10.1016/0022-247X(73)90172-8Search in Google Scholar

[45] R. Sack, Taylor’s theorem for shift operators. Philos. Mag. 3 (1958), 497–503.10.1080/14786435808244572Search in Google Scholar

[46] T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Comb model with slow and ultraslow diffusion. Math. Model. Nat. Phenom. 11, No 3 (2016), 18–33.10.1051/mmnp/201611302Search in Google Scholar

[47] I.N. Sneddon, The Use of Integral Transforms. TATA McGraw-Hill Publishing Company, Dew Delhi (1974).Search in Google Scholar

[48] I.M. Sokolov, J. Klafter, Field-induces dispersion in subdiffusion. Phys. Rev. Lett. 97 (2006), 140602 (4 pp).10.1103/PhysRevLett.97.140602Search in Google Scholar

[49] V. Strehl, Lacunary Laguerre series from a combinatorial perspective. Sém. Lotharingien de Combinatoire76 (2017), Art. # B76c (39 pp).Search in Google Scholar

[50] K. Weron, M. Kotulski, On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Physica A232, No 1-2 (1996), 180–188.10.1016/0378-4371(96)00209-9Search in Google Scholar

[51] D. Widder, The Heat Equation. Academic Press, New York (1975).Search in Google Scholar

[52] Y. Zhou, Basic Theory of Fractional Differential Equations. World Scientific, New Jersey (2014).10.1142/9069Search in Google Scholar

Appendix A. Proof of Eq. (5.10)

Let us recall

eλκ2=eu24λeκudu2πλ,(7.1)

in which we take λ = τ and κ=xddx. According to the operational method Eq. (7.1) with such chosen λ and κ reads as, [10, 11],

F1(x,τ)=eτ(xddx)2f(x)=eu24τeuxddxf(x)du2πλ.(7.2)

The use of example (2) enable us to obtain Eq. (7.2) as the left hand site of Eq. (5.10) times eτ.

Observe that the solution (7.2) satisfies the partial differential equation in the form

τF1(x,τ)=x2d2dx2+xddxF1(x,τ).
Received: 2017-10-30
Published Online: 2018-3-13
Published in Print: 2018-2-23

© 2018 Diogenes Co., Sofia

Articles in the same Issue

  1. Frontmatter
  2. Editorial Note
  3. FCAA related news, events and books (FCAA–volume 21–1–2018)
  4. Survey Paper
  5. From continuous time random walks to the generalized diffusion equation
  6. Survey Paper
  7. Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
  8. Research Paper
  9. Exact and numerical solutions of the fractional Sturm–Liouville problem
  10. Research Paper
  11. Some stability properties related to initial time difference for Caputo fractional differential equations
  12. Research Paper
  13. On an eigenvalue problem involving the fractional (s, p)-Laplacian
  14. Research Paper
  15. Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
  16. Research Paper
  17. Time-fractional diffusion with mass absorption under harmonic impact
  18. Research Paper
  19. Optimal control of linear systems with fractional derivatives
  20. Research Paper
  21. Time-space fractional derivative models for CO2 transport in heterogeneous media
  22. Research Paper
  23. Improvements in a method for solving fractional integral equations with some links with fractional differential equations
  24. Research Paper
  25. On some fractional differential inclusions with random parameters
  26. Research Paper
  27. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
  28. Research Paper
  29. Mittag-Leffler function and fractional differential equations
  30. Research Paper
  31. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
  32. Research Paper
  33. Differential and integral relations in the class of multi-index Mittag-Leffler functions
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0014/pdf?lang=en
Scroll to top button