Abstract
We adopt a procedure of operational-umbral type to solve the (1 + 1)-dimensional fractional Fokker-Planck equation in which time fractional derivative of order α (0 < α < 1) is in the Riemann-Liouville sense. The technique we propose merges well documented operational methods to solve ordinary FP equation and a redefinition of the time by means of an umbral operator. We show that the proposed method allows significant progress including the handling of operator ordering.
Acknowledgments
The authors thanks Prof. Andrzej Horzela and Dr. Silvia Liccardi for helpful discussion and suggestions.
K.G and A.L. were supported by the NCN, OPUS-12, Program No. UMO-2016/23/B/ST3/01714. Moreover, K.G. thanks for support from MNiSW (Poland), Iuventus Plus 2015-2016, Program No. IP2014 013073.
References
[1] S.T. Ali, K. Górska, A. Horzela, F.H. Szafraniec, Squeezed States and Hermite polynomials in a complex variable. J. Math. Phys. 55 (2014), Art. # 012107 (11 pp).10.1063/1.4861932Suche in Google Scholar
[2] D. Babusci, G. Dattoli, K. Górska, K.A. Penson, Lacunary generating functions for the Laguerre polynomials. Séminaire Lotharingien de Combinatoire76 (2017), Art.# B76b (19 pp).Suche in Google Scholar
[3] P. Blasiak, A. Horzela, K.A. Penson, G.H.E. Duchamp, A.I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials. Phys. Lett. A338, No 2 (2005), 108–116.10.1016/j.physleta.2005.02.028Suche in Google Scholar
[4] E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Special Topics193 (2011), 161–171.10.1140/epjst/e2011-01388-0Suche in Google Scholar
[5] F. Ciocci, G. Dattoli, A. Torre, A. Renieri, Insertion Devises for Synchrotron Radiation and Free Electron Laser. World Scientific, Singapore (2000).10.1142/4066Suche in Google Scholar
[6] G. Dattoli, Operational methods, fractional operators and special polynomials. Appl. Math. Comput. 141 (2003), 151–159.10.1016/S0096-3003(02)00329-6Suche in Google Scholar
[7] G. Dattoli, J.C. Gallardo, A. Torre, An algebraic view to the operatorial ordering and its applications to optics. Riv. Nuovo Cim. 11, No 11 (1988), 1–79.10.1007/BF02724503Suche in Google Scholar
[8] G. Dattoli, B. Germano, P.E. Ricci, Comments on monomiality, ordinary polynomials and associated bi-orthogonal functions. Appl. Math. Comput. 154 (2004), 219–227.10.1016/S0096-3003(03)00705-7Suche in Google Scholar
[9] G. Dattoli, K. Górska, A. Horzela, S. Licciardi, R.M. Pidatella, Comments on the properties of Mittag-Leffler function. arXiv: 1707.01135 (2017).Suche in Google Scholar
[10] G. Dattoli, S. Khan, P.E. Ricci, On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case. Integr. Transf. Spec. Fun. 19, No 1 (2008), 1–9.10.1080/10652460701358984Suche in Google Scholar
[11] G. Dattoli, S. Licciardi and R.M. Pidatella, Theory of generalized trigonometric functions: from Laguerre to Airy forms. arXiv:1702.08520v1 (2017).10.1016/j.jmaa.2018.07.044Suche in Google Scholar
[12] G. Dattoli, P.L. Ottaviviani, A. Torre, L. Vázquez, Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cim. 20, No 2 (1997), 1–133.10.1007/BF02907529Suche in Google Scholar
[13] G. Dattoli, H.M. Srivastava, K.V. Zhukovsky, A new family of integral transforms and their applications. Integr. Transf. Spec. Fun. 17, No 1 (2006), 31–37.10.1080/10652460500389081Suche in Google Scholar
[14] M.M. Dzherbashyan, Integral Transforms and Representations of Functions in Complex Domain (in Russian). Nauka, Moscow (1966).Suche in Google Scholar
[15] R. Garrappa, M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39 (2013), 205–225.10.1007/s10444-012-9274-zSuche in Google Scholar
[16] I.M. Gessel, P. Jayawant, A triple lacunary generating function for Hermite polynomials. Electron. J. Comb. 12, No 1 (2005), R30 (14pp).10.37236/1927Suche in Google Scholar
[17] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler functions. Related Topics and Applications. Springer-Verlag, Berlin (2014).10.1007/978-3-662-43930-2Suche in Google Scholar
[18] R. Gorenflo, F. Mainardi, Fractional calculus and stable probability distributions. Archives of Mechanics50, No 30 (1998), 377–388.Suche in Google Scholar
[19] K. Górska, A. Horzela, K.A. Penson, G. Dattoli, The higher-order heattype equations via signed Lévy stable and generalized Airy functions. J. Phys. A: Math. Theor. 46 (2013), # 425001 (16pp).10.1088/1751-8113/46/42/425001Suche in Google Scholar
[20] K. Górska, A. Horzela, K.A. Penson, G. Dattoli, G.H.E. Duchamp, The stretched exponential behavior and its underlying dynamics. The phenomenological approach. Fract. Calc. Appl. Anal. 20, No 1 (2017), 260–283; 10.1515/fca-2017-0014; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.Suche in Google Scholar
[21] K. Górska, K.A. Penson, D. Babusci, G. Dattoli, G.H.E. Duchamp, Operator solutions for fractional Fokker-Planck equations. Phys. Rev. E85 (2012), # 031138 (4 pp).10.1103/PhysRevE.85.031138Suche in Google Scholar
[22] I.S. Gradhteyn, I.M. Ryzhik, Table of Integrals, Series and Products. 7th Ed., Academic Press (2007).Suche in Google Scholar
[23] T. Haimo, C. Market, A representation theory for solutions of a higher order heat equation, I. J. Math. Anal. Appl. 168 (1992), 89–107.10.1016/0022-247X(92)90191-FSuche in Google Scholar
[24] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011), Article ID 298628 (51 pp).10.1155/2011/298628Suche in Google Scholar
[25] K.A. Penson, P. Blasiak, G.H.E. Duchamp, A. Horzela, A.I. Solomon, On certain non-unique solutions of the Stieltjes moment problem, Dis-crete. Math. Theor. Comp. Sci. 12, No 2 (2010), 295–306.10.46298/dmtcs.507Suche in Google Scholar
[26] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applicationsof Fractional Differential Equations. Elsevier, Amsterdam (2006).Suche in Google Scholar
[27] Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Frac. Calc. Appl. Anal. 15, No 1 (2012), 141–160; 10.2478/s13540-012-0010-7; https://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.Suche in Google Scholar
[28] Y. Luchko, F. Mainardi, Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Centr. Eur. J. Phys11 (2013), 666–675.10.2478/s11534-013-0247-8Suche in Google Scholar
[29] M. Magdziarz, A. Weron, K. Weron, Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation. Phys. Rev. E75 (2007), # 016708 (6 pp).10.1103/PhysRevE.75.016708Suche in Google Scholar
[30] M. Magdziarz, T. Zorawik, Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space-time-dependent coefficients. Proc. Amer. Math. Soc. 144 (2016), 1767–1778.10.1090/proc/12856Suche in Google Scholar
[31] F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293 (2015), 70–80.10.1016/j.jcp.2014.08.006Suche in Google Scholar
[32] F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations. arXiv:0704.0320 (2007).Suche in Google Scholar
[33] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.10.1016/S0370-1573(00)00070-3Suche in Google Scholar
[34] I. Podlubny, Fractional Differential Equations. Ser. Mathematics and Science and Engineering, Vol. 198, Academic Press, San Diego (1999).Suche in Google Scholar
[35] K.A. Penson and K. Górska, Exact and explicit probability densities for one-sided Lévy stable distributions. Phys. Rev. Lett. 105 (2010), # 210604 (4 pp).10.1103/PhysRevLett.105.210604Suche in Google Scholar PubMed
[36] K.A. Penson, K. Górska, On the properties of Laplace transform originating from one-sided Lévy stable laws. J. Phys. A: Math. Theor. 49 (2016), # 065201 (10 pp).10.1088/1751-8113/49/6/065201Suche in Google Scholar
[37] H. Pollard, The representation of e–xλ as a Laplace integral. Bull. Amer. Math. Soc. 52 (1946), 908–910.10.1090/S0002-9904-1946-08672-3Suche in Google Scholar
[38] Y. Povstenko, T. Kyrylych, Two approaches to obtaining the space-time fractional advection-diffusion equation. Entropy19 (2017), Art. # 297 (19 pp).10.3390/e19070297Suche in Google Scholar
[39] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series. Vol. 1. Elementary Functions. Gordon and Breach, Amsterdam (1998).Suche in Google Scholar
[40] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series. Vol. 2. Special Functions. Gordon and Breach, Amsterdam (1998).Suche in Google Scholar
[41] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach, Amsterdam (2003).Suche in Google Scholar
[42] S. Roman, The Umbral Calculus. Dover Publications Inc., New York (1984).Suche in Google Scholar
[43] P.C. Rosenbloom, D.V. Widder, Expansions in terms of heat polynmials and associated functions. Trans. Amer. Math. Soc. 92 (1959), 220–266.10.1090/S0002-9947-1959-0107118-2Suche in Google Scholar
[44] G.-C. Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42 (1973), 684–760.10.1016/0022-247X(73)90172-8Suche in Google Scholar
[45] R. Sack, Taylor’s theorem for shift operators. Philos. Mag. 3 (1958), 497–503.10.1080/14786435808244572Suche in Google Scholar
[46] T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Comb model with slow and ultraslow diffusion. Math. Model. Nat. Phenom. 11, No 3 (2016), 18–33.10.1051/mmnp/201611302Suche in Google Scholar
[47] I.N. Sneddon, The Use of Integral Transforms. TATA McGraw-Hill Publishing Company, Dew Delhi (1974).Suche in Google Scholar
[48] I.M. Sokolov, J. Klafter, Field-induces dispersion in subdiffusion. Phys. Rev. Lett. 97 (2006), 140602 (4 pp).10.1103/PhysRevLett.97.140602Suche in Google Scholar
[49] V. Strehl, Lacunary Laguerre series from a combinatorial perspective. Sém. Lotharingien de Combinatoire76 (2017), Art. # B76c (39 pp).Suche in Google Scholar
[50] K. Weron, M. Kotulski, On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Physica A232, No 1-2 (1996), 180–188.10.1016/0378-4371(96)00209-9Suche in Google Scholar
[51] D. Widder, The Heat Equation. Academic Press, New York (1975).Suche in Google Scholar
[52] Y. Zhou, Basic Theory of Fractional Differential Equations. World Scientific, New Jersey (2014).10.1142/9069Suche in Google Scholar
Appendix A. Proof of Eq. (5.10)
Let us recall
in which we take λ = τ and
The use of example (2) enable us to obtain Eq. (7.2) as the left hand site of Eq. (5.10) times eτ.
Observe that the solution (7.2) satisfies the partial differential equation in the form
© 2018 Diogenes Co., Sofia
Artikel in diesem Heft
- Frontmatter
- Editorial Note
- FCAA related news, events and books (FCAA–volume 21–1–2018)
- Survey Paper
- From continuous time random walks to the generalized diffusion equation
- Survey Paper
- Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
- Research Paper
- Exact and numerical solutions of the fractional Sturm–Liouville problem
- Research Paper
- Some stability properties related to initial time difference for Caputo fractional differential equations
- Research Paper
- On an eigenvalue problem involving the fractional (s, p)-Laplacian
- Research Paper
- Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
- Research Paper
- Time-fractional diffusion with mass absorption under harmonic impact
- Research Paper
- Optimal control of linear systems with fractional derivatives
- Research Paper
- Time-space fractional derivative models for CO2 transport in heterogeneous media
- Research Paper
- Improvements in a method for solving fractional integral equations with some links with fractional differential equations
- Research Paper
- On some fractional differential inclusions with random parameters
- Research Paper
- Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
- Research Paper
- Mittag-Leffler function and fractional differential equations
- Research Paper
- Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
- Research Paper
- Differential and integral relations in the class of multi-index Mittag-Leffler functions
Artikel in diesem Heft
- Frontmatter
- Editorial Note
- FCAA related news, events and books (FCAA–volume 21–1–2018)
- Survey Paper
- From continuous time random walks to the generalized diffusion equation
- Survey Paper
- Properties of the Caputo-Fabrizio fractional derivative and its distributional settings
- Research Paper
- Exact and numerical solutions of the fractional Sturm–Liouville problem
- Research Paper
- Some stability properties related to initial time difference for Caputo fractional differential equations
- Research Paper
- On an eigenvalue problem involving the fractional (s, p)-Laplacian
- Research Paper
- Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function
- Research Paper
- Time-fractional diffusion with mass absorption under harmonic impact
- Research Paper
- Optimal control of linear systems with fractional derivatives
- Research Paper
- Time-space fractional derivative models for CO2 transport in heterogeneous media
- Research Paper
- Improvements in a method for solving fractional integral equations with some links with fractional differential equations
- Research Paper
- On some fractional differential inclusions with random parameters
- Research Paper
- Initial boundary value problems for a fractional differential equation with hyper-Bessel operator
- Research Paper
- Mittag-Leffler function and fractional differential equations
- Research Paper
- Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point
- Research Paper
- Differential and integral relations in the class of multi-index Mittag-Leffler functions