Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.
-
Research funding: None declared.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Not applicable.
-
Ethical approval: Not applicable.
References
1. Deuschl, G, Beghi, E, Fazekas, F, Varga, T, Christoforidi, KA, Sipido, E, et al.. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Health 2020;5:e551–67. https://doi.org/10.1016/S2468-2667(20)30190-0.Suche in Google Scholar
2. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:459–80. https://doi.org/10.1016/S1474-4422(18)30499-X.Suche in Google Scholar
3. Belvisi, D, Pellicciari, R, Fabbrini, G, Tinazzi, M, Berardelli, A, Defazio, G. Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: what do prospective studies suggest? Neurobiol Dis 2020;134:104671. https://doi.org/10.1016/j.nbd.2019.104671.Suche in Google Scholar
4. Blauwendraat, C, Nalls, MA, Singleton, AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2020;19:170–8. https://doi.org/10.1016/S1474-4422(19)30287-X.Suche in Google Scholar
5. Khan, AU, Akram, M, Daniyal, M, Zainab, R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2019;129:55–93. https://doi.org/10.1080/00207454.2018.1486837.Suche in Google Scholar PubMed
6. Jagadeesan, AJ, Murugesan, R, Vimala Devi, S, Meera, M, Madhumala, G, et al.. Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: a review. Acta Biomed 2017;88:249–62. https://doi.org/10.23750/abm.v88i3.6063.Suche in Google Scholar PubMed PubMed Central
7. Ascherio, A, LeWitt, PA, Xu, K, Eberly, S, Watts, A, Matson, WR, et al.. Parkinson Study Group DATATOP Investigators. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 2009;66:1460–8. https://doi.org/10.1001/archneurol.2009.247.Suche in Google Scholar PubMed PubMed Central
8. O’Reilly, EJ, Gao, X, Weisskopf, MG, Chen, H, Schwarzschild, MA, Spiegelman, D, et al.. Plasma urate and Parkinson’s disease in women. Am J Epidemiol 2010;172:666–70. https://doi.org/10.1093/aje/kwq195.Suche in Google Scholar PubMed PubMed Central
9. Cortese, M, Riise, T, Engeland, A, Ascherio, A, Bjørnevik, K. Urate and the risk of Parkinson’s disease in men and women. Park Relat Disord 2018;52:76–82. https://doi.org/10.1016/j.parkreldis.2018.03.026.Suche in Google Scholar PubMed
10. Bakshi, R, Macklin, EA, Logan, R, Zorlu, MM, Xia, N, Crotty, GF, et al.. Higher urate in LRRK2 mutation carriers resistant to Parkinson disease. Ann Neurol 2019;85:593–9. https://doi.org/10.1002/ana.25436.Suche in Google Scholar PubMed
11. Migdalska-Richards, A, Schapira, AH. The relationship between glucocerebrosidase mutations and Parkinson disease. J Neurochem 2016;139(1 Suppl):77–90. https://doi.org/10.1111/jnc.13385.Suche in Google Scholar
12. Liu, L, Xiong, N, Zhang, P, Chen, C, Huang, J, Zhang, G, et al.. Genetic variants in GAPDH confer susceptibility to sporadic Parkinson’s disease in a Chinese Han population. PloS One 2015;10:e0135425. https://doi.org/10.1371/journal.pone.0135425.Suche in Google Scholar
13. Manzoni, C, Lewis, PA. Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. Faseb J 2013;27:3424–9. https://doi.org/10.1096/fj.12-223842.Suche in Google Scholar
14. Chen, H, Zhang, SM, Hernán, MA, Willett, WC, Ascherio, A. Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol 2002;52:793–801. https://doi.org/10.1002/ana.10381.Suche in Google Scholar
15. Chen, H, O’Reilly, E, McCullough, ML, Rodriguez, C, Schwarzschild, MA, Calle, EE, et al.. Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol 2007;165:998–1006. https://doi.org/10.1093/aje/kwk089.Suche in Google Scholar
16. Taylor, KS, Cook, JA, Counsell, CE. Heterogeneity in male to female risk for Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007;78:905–6. https://doi.org/10.1136/jnnp.2006.104695.Suche in Google Scholar
17. Sääksjärvi, K, Knekt, P, Lundqvist, A, Männistö, S, Heliövaara, M, Rissanen, H, et al.. A cohort study on diet and the risk of Parkinson’s disease: the role of food groups and diet quality. Br J Nutr 2013;109:329–37. https://doi.org/10.1017/S0007114512000955.Suche in Google Scholar
18. Langston, JW, Ballard, P, Tetrud, JW, Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979–80. https://doi.org/10.1126/science.6823561.Suche in Google Scholar
19. Weisskopf, MG, Knekt, P, O’Reilly, EJ, Lyytinen, J, Reunanen, A, Laden, F, et al.. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 2010;74:1055–61. https://doi.org/10.1212/WNL.0b013e3181d76a93.Suche in Google Scholar
20. Dickson, DW, Fujishiro, H, Orr, C, DelleDonne, A, Josephs, KA, Frigerio, R, et al.. Neuropathology of non-motor features of Parkinson disease. Park Relat Disord 2009;15(3 Suppl):S1–5. https://doi.org/10.1016/S1353-8020(09)70769-2.Suche in Google Scholar
21. Dickson, DW. Neuropathology of Parkinson disease. Park Relat Disord 2018;46(1 Suppl):S30–3. https://doi.org/10.1016/j.parkreldis.2017.07.033.Suche in Google Scholar PubMed PubMed Central
22. Houlden, H, Singleton, AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 2012;124:325–38. https://doi.org/10.1007/s00401-012-1013-5.Suche in Google Scholar PubMed PubMed Central
23. Kim, WG, Mohney, RP, Wilson, B, Jeohn, GH, Liu, B, Hong, JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 2000;20:6309–16. https://doi.org/10.1523/JNEUROSCI.20-16-06309.2000.Suche in Google Scholar
24. McGeer, PL, Itagaki, S, Boyes, BE, McGeer, EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988;38:1285–91. https://doi.org/10.1212/wnl.38.8.1285.Suche in Google Scholar PubMed
25. Zeng, XS, Geng, WS, Jia, JJ. Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 2018;10:1759091418777438. https://doi.org/10.1177/1759091418777438.Suche in Google Scholar PubMed PubMed Central
26. Levin, OS, Anikina, MA, Shindriaeva, NN, Zimniakova, OS. Psychotic disorders in Parkinson’s disease and dementia with Lewy bodies. Zh Nevrol Psikhiatr Im S S Korsakova 2011;111:82–8. Russian.Suche in Google Scholar
27. Kay, DM, Factor, SA, Samii, A, Higgins, DS, Griffith, A, Roberts, JW, et al.. Genetic association between alpha-synuclein and idiopathic Parkinson’s disease. Am J Med Genet Neuropsychiatr Genet 2008;147B:1222–30. https://doi.org/10.1002/ajmg.b.30758.Suche in Google Scholar PubMed
28. Miklya, I, Göltl, P, Hafenscher, F, Pencz, N. A parkin szerepe a Parkinson-kórban [The role of parkin in Parkinson’s disease]. Neuropsychopharmacol Hung 2014;16:67–76. Hungarian.Suche in Google Scholar
29. Ungerstedt, U, Pycock, C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1974;30:44–55.Suche in Google Scholar
30. Ge, H, Yan, Z, Zhu, H, Zhao, H. MiR-410 exerts neuroprotective effects in a cellular model of Parkinson’s disease induced by 6-hydroxydopamine via inhibiting the PTEN/AKT/mTOR signaling pathway. Exp Mol Pathol 2019;109:16–24. https://doi.org/10.1016/j.yexmp.2019.05.002.Suche in Google Scholar PubMed
31. Chalorak, P, Dharmasaroja, P, Meemon, K. Downregulation of eEF1A/EFT3-4 enhances dopaminergic neurodegeneration after 6-OHDA exposure in C. elegans model. Front Neurosci 2020;14:303. https://doi.org/10.3389/fnins.2020.00303.Suche in Google Scholar PubMed PubMed Central
32. Kowall, NW, Hantraye, P, Brouillet, E, Beal, MF, McKee, AC, Ferrante, RJ. MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 2000;11:211–3. https://doi.org/10.1097/00001756-200001170-00041.Suche in Google Scholar PubMed
33. Fornai, F, Schlüter, OM, Lenzi, P, Gesi, M, Ruffoli, R, Ferrucci, M, et al.. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 2005;102:3413–8. https://doi.org/10.1073/pnas.0409713102.Suche in Google Scholar PubMed PubMed Central
34. Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 2004;318:215–24. https://doi.org/10.1007/s00441-004-0938-y.Suche in Google Scholar
35. Dong, H, Qin, Y, Huang, Y, Ji, D, Wu, F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson’s disease. Neurochem Int 2019;126:178–86. https://doi.org/10.1016/j.neuint.2019.03.013.Suche in Google Scholar
36. Zhao, M, Chen, J, Mao, K, She, H, Ren, Y, Gui, C, et al.. Mitochondrial calcium dysfunction contributes to autophagic cell death induced by MPP+ via AMPK pathway. Biochem Biophys Res Commun 2019;509:390–4. https://doi.org/10.1016/j.bbrc.2018.12.148.Suche in Google Scholar
37. Niso-Santano, M, González-Polo, RA, Bravo-San Pedro, JM, Gómez-Sánchez, R, Lastres-Becker, I, Ortiz-Ortiz, MA, et al.. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic Biol Med 2010;48:1370–81. https://doi.org/10.1016/j.freeradbiomed.2010.02.024.Suche in Google Scholar
38. Barbeau, A, Dallaire, L, Buu, NT, Poirier, J, Rucinska, E. Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens. Life Sci 1985;37:1529–38. https://doi.org/10.1016/0024-3205(85)90185-7.Suche in Google Scholar
39. Garcia-Garcia, A, Anandhan, A, Burns, M, Chen, H, Zhou, Y, Franco, R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP+-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 2013;136:166–82. https://doi.org/10.1093/toxsci/kft188.Suche in Google Scholar PubMed PubMed Central
40. Betarbet, R, Sherer, TB, MacKenzie, G, Garcia-Osuna, M, Panov, AV, Greenamyre, JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000;3:1301–6. https://doi.org/10.1038/81834.Suche in Google Scholar PubMed
41. Sherer, TB, Kim, JH, Betarbet, R, Greenamyre, JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003;179:9–16. https://doi.org/10.1006/exnr.2002.8072.Suche in Google Scholar PubMed
42. Blesa, J, Phani, S, Jackson-Lewis, V, Przedborski, S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012;2012:845618. https://doi.org/10.1155/2012/845618.Suche in Google Scholar PubMed PubMed Central
43. Salama, RM, Abdel-Latif, GA, Abbas, SS, El Magdoub, HM, Schaalan, MF. Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020;164:107900. https://doi.org/10.1016/j.neuropharm.2019.107900.Suche in Google Scholar PubMed
44. Zhang, Y, Guo, H, Guo, X, Ge, D, Shi, Y, Lu, X, et al.. Involvement of Akt/mTOR in the neurotoxicity of rotenone-induced Parkinson’s disease models. Int J Environ Res Publ Health 2019;16:3811. https://doi.org/10.3390/ijerph16203811.Suche in Google Scholar PubMed PubMed Central
45. Zhou, Q, Chen, B, Wang, X, Wu, L, Yang, Y, Cheng, X, et al.. Sulforaphane protects against rotenone-induced neurotoxicity in vivo: involvement of the mTOR, Nrf2, and autophagy pathways. Sci Rep 2016;6:32206. https://doi.org/10.1038/srep32206.Suche in Google Scholar PubMed PubMed Central
46. Bowman, AB, Kwakye, GF, Herrero Hernández, E, Aschner, M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 2011;25:191–203. https://doi.org/10.1016/j.jtemb.2011.08.144.Suche in Google Scholar PubMed PubMed Central
47. Sadeghi, L, Babadi, VY, Tanwir, F. Manganese dioxide nanoparticle induces Parkinson like neurobehavioral abnormalities in rats. Bratisl Lek Listy 2018;119:379–84. https://doi.org/10.4149/BLL_2018_070.Suche in Google Scholar PubMed
48. Zhang, J, Cao, R, Cai, T, Aschner, M, Zhao, F, Yao, T, et al.. The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res 2013;24:478–90. https://doi.org/10.1007/s12640-013-9392-5.Suche in Google Scholar PubMed PubMed Central
49. Zhang, Z, Miah, M, Culbreth, M, Aschner, M. Autophagy in neurodegenerative diseases and metal neurotoxicity. Neurochem Res 2016;41:409–22. https://doi.org/10.1007/s11064-016-1844-x.Suche in Google Scholar PubMed
50. Huot, P, Johnston, TH, Koprich, JB, Fox, SH, Brotchie, JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 2013;65:171–222. https://doi.org/10.1124/pr.111.005678.Suche in Google Scholar PubMed
51. Siddiqui, IJ, Pervaiz, N, Abbasi, AA. The Parkinson Disease gene SNCA: evolutionary and structural insights with pathological implication. Sci Rep 2016;6:24475. https://doi.org/10.1038/srep24475.Suche in Google Scholar PubMed PubMed Central
52. Dupont, E, Andersen, A, Boas, J, Boisen, E, Borgmann, R, Helgetveit, AC, et al.. Sustained-release Madopar HBS compared with standard Madopar in the long-term treatment of de novo parkinsonian patients. Acta Neurol Scand 1996;93:14–20. https://doi.org/10.1111/j.1600-0404.1996.tb00163.x.Suche in Google Scholar PubMed
53. Cenci, MA, Ohlin, KE, Odin, P. Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 2011;10:670–84. https://doi.org/10.2174/187152711797247885.Suche in Google Scholar PubMed
54. Shill, H, Stacy, M. Respiratory function in Parkinson’s disease. Clin Neurosci 1998;5:131–5.Suche in Google Scholar
55. Potenza, MN, Voon, V, Weintraub, D. Drug Insight: impulse control disorders and dopamine therapies in Parkinson’s disease. Nat Clin Pract Neurol 2007;3:664–72. https://doi.org/10.1038/ncpneuro0680.Suche in Google Scholar
56. Rascol, O, Brooks, DJ, Melamed, E, Oertel, W, Poewe, W, Stocchi, F, et al.. LARGO study group. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, lasting effect in adjunct therapy with rasagiline given once daily, study): a randomised, double-blind, parallel-group trial. Lancet 2005;365:947–54. https://doi.org/10.1016/S0140-6736(05)71083-7.Suche in Google Scholar
57. Brooks, DJ, Leinonen, M, Kuoppamäki, M, Nissinen, H. Five-year efficacy and safety of levodopa/DDCI and entacapone in patients with Parkinson’s disease. J Neural Transm 2008;115:843–9. https://doi.org/10.1007/s00702-008-0025-8.Suche in Google Scholar
58. Müller, T. Drug treatment of non-motor symptoms in Parkinson’s disease. Expet Opin Pharmacother 2002;3:381–8. https://doi.org/10.1517/14656566.3.4.381.Suche in Google Scholar
59. Bankiewicz, KS, Eberling, JL, Kohutnicka, M, Jagust, W, Pivirotto, P, Bringas, J, et al.. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000;164:2–14. https://doi.org/10.1006/exnr.2000.7408.Suche in Google Scholar
60. Carlsson, T, Winkler, C, Lundblad, M, Cenci, MA, Björklund, A, Kirik, D. Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol Dis 2006;21:657–68. https://doi.org/10.1016/j.nbd.2005.09.008.Suche in Google Scholar
61. Björklund, T, Carlsson, T, Cederfjäll, EA, Carta, M, Kirik, D. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson’s disease. Brain 2010;133:496–511. https://doi.org/10.1093/brain/awp314.Suche in Google Scholar
62. Palfi, S. Towards gene therapy for Parkinson’s disease. Lancet Neurol 2008;7:375–6. https://doi.org/10.1016/S1474-4422(08)70066-8.Suche in Google Scholar
63. Sarmah, D, Kaur, H, Saraf, J, Pravalika, K, Goswami, A, Kalia, K, et al.. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res 2018;9:356–74. https://doi.org/10.1007/s12975-017-0580-0.Suche in Google Scholar PubMed
64. Jin, GZ, Cho, SJ, Choi, EG, Lee, YS, Yu, XF, Choi, KS, et al.. Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int 2008;32:1433–8. https://doi.org/10.1016/j.cellbi.2008.08.014.Suche in Google Scholar PubMed
65. Wernig, M, Zhao, JP, Pruszak, J, Hedlund, E, Fu, D, Soldner, F, et al.. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008;105:5856–61. https://doi.org/10.1073/pnas.0801677105.Suche in Google Scholar PubMed PubMed Central
66. Glavaski-Joksimovic, A, Bohn, MC. Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Exp Neurol 2013;247:25–38. https://doi.org/10.1016/j.expneurol.2013.03.016.Suche in Google Scholar PubMed
67. van den Berge, SA, van Strien, ME, Hol, EM. Resident adult neural stem cells in Parkinson’s disease--the brain’s own repair system? Eur J Pharmacol 2013;719:117–27. https://doi.org/10.1016/j.ejphar.2013.04.058.Suche in Google Scholar PubMed
68. Krack, P, Batir, A, Van Blercom, N, Chabardes, S, Fraix, V, Ardouin, C, et al.. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003;349:1925–34. https://doi.org/10.1056/NEJMoa035275.Suche in Google Scholar PubMed
69. Vadalà, M, Vallelunga, A, Palmieri, L, Palmieri, B, Morales-Medina, JC, Iannitti, T. Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behav Brain Funct 2015;11:26. https://doi.org/10.1186/s12993-015-0070-z.Suche in Google Scholar PubMed PubMed Central
70. Lau, YS, Patki, G, Das-Panja, K, Le, WD, Ahmad, SO. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 2011;33:1264–74. https://doi.org/10.1111/j.1460-9568.2011.07626.x.Suche in Google Scholar PubMed PubMed Central
71. La Hue, SC, Comella, CL, Tanner, CM. The best medicine? The influence of physical activity and inactivity on Parkinson’s disease. Mov Disord 2016;31:1444–54. https://doi.org/10.1002/mds.26728.Suche in Google Scholar PubMed
72. Cotman, CW, Berchtold, NC, Christie, LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007;30:464–72. Epub 2007 Aug 31. Erratum in: Trends Neurosci. 2007 Oct;30(10):489. https://doi.org/10.1016/j.tins.2007.06.011.Suche in Google Scholar PubMed
73. Sarrafchi, A, Bahmani, M, Shirzad, H, Rafieian-Kopaei, M. Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants. Curr Pharmaceut Des 2016;22:238–46. https://doi.org/10.2174/1381612822666151112151653.Suche in Google Scholar PubMed
74. Shen, CY, Jiang, JG, Yang, L, Wang, DW, Zhu, W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol 2016;174:1395–425. https://doi.org/10.1111/bph.13631.Suche in Google Scholar PubMed PubMed Central
75. Kim, HJ, Jeon, B, Chung, SJ. Professional ethics in complementary and alternative medicines in management of Parkinson’s disease. J Parkinsons Dis 2016;6:675–83. https://doi.org/10.3233/JPD-160890.Suche in Google Scholar PubMed PubMed Central
76. Li, S, Dong, J, Cheng, C, Le, W. Therapies for Parkinson’s diseases: alternatives to current pharmacological interventions. J Neural Transm 2016;123:1279–99. https://doi.org/10.1007/s00702-016-1603-9.Suche in Google Scholar PubMed
77. Islam, MT, da Silva, CB, de Alencar, MV, Paz, MF, Almeida, FR, Melo-Cavalcante, AA. Diterpenes: advances in neurobiological drug research. Phytother Res 2016;30:915–28. https://doi.org/10.1002/ptr.5609.Suche in Google Scholar PubMed
78. Solanki, I, Parihar, P, Parihar, MS. Neurodegenerative diseases: from available treatments to prospective herbal therapy. Neurochem Int 2016;95:100–8. https://doi.org/10.1016/j.neuint.2015.11.001.Suche in Google Scholar PubMed
79. Sun, A, Xu, X, Lin, J, Cui, X, Xu, R. Neuroprotection by saponins. Phytother Res 2015;29:187–200. https://doi.org/10.1002/ptr.5246.Suche in Google Scholar PubMed
80. Feng, ST, Wang, ZZ, Yuan, YH, Sun, HM, Chen, NH, Zhang, Y. Mangiferin: a multipotent natural product preventing neurodegeneration in Alzheimer’s and Parkinson’s disease models. Pharmacol Res 2019;146:104336. https://doi.org/10.1016/j.phrs.2019.104336.Suche in Google Scholar PubMed
81. Hatziagapiou, K, Kakouri, E, Lambrou, GI, Bethanis, K, Tarantilis, PA. Antioxidant properties of Crocus Sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer’s and Parkinson’s disease. Curr Neuropharmacol 2019;17:377–402. https://doi.org/10.2174/1570159X16666180321095705.Suche in Google Scholar PubMed PubMed Central
82. Cao, F, Sun, S, Tong, ET. Experimental study on inhibition of neuronal toxical effect of levodopa by ginkgo biloba extract on Parkinson disease in rats. J Huazhong Univ Sci Technol – Med Sci 2003;23:151–3. https://doi.org/10.1007/BF02859941.Suche in Google Scholar PubMed
83. Wang, YQ, Wang, MY, Fu, XR, Peng-Yu, Gao, GF, Fan, YM, et al.. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron. Free Radic Res 2015;49:1069–80. https://doi.org/10.3109/10715762.2015.1032958.Suche in Google Scholar PubMed
84. Kang, X, Chen, J, Xu, Z, Li, H, Wang, B. Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicol Vitro 2007;21:1003–9. https://doi.org/10.1016/j.tiv.2007.02.004.Suche in Google Scholar PubMed
85. Chen, XC, Chen, Y, Zhu, YG, Fang, F, Chen, LM. Protective effect of ginsenoside Rg1 against MPTP-induced apoptosis in mouse substantia nigra neurons. Acta Pharmacol Sin 2002;23:829–34.Suche in Google Scholar
86. Van Kampen, J, Robertson, H, Hagg, T, Drobitch, R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 2003;184:521–9. https://doi.org/10.1016/j.expneurol.2003.08.002.Suche in Google Scholar PubMed
87. Cheng, Y, He, G, Mu, X, Zhang, T, Li, X, Hu, J, et al.. Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 2008;441:16–20. https://doi.org/10.1016/j.neulet.2008.05.116.Suche in Google Scholar PubMed
88. Chen, HQ, Jin, ZY, Wang, XJ, Xu, XM, Deng, L, Zhao, JW. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci Lett 2008;448:175–9. https://doi.org/10.1016/j.neulet.2008.10.046.Suche in Google Scholar PubMed
89. Mu, X, He, G, Cheng, Y, Li, X, Xu, B, Du, G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 2009;92:642–8. https://doi.org/10.1016/j.pbb.2009.03.008.Suche in Google Scholar PubMed
90. Patil, SP, Jain, PD, Sancheti, JS, Ghumatkar, PJ, Tambe, R, Sathaye, S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 2014;86:192–202. https://doi.org/10.1016/j.neuropharm.2014.07.012.Suche in Google Scholar PubMed
91. Karuppagounder, SS, Madathil, SK, Pandey, M, Haobam, R, Rajamma, U, Mohanakumar, KP. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 2013;236:136–48. https://doi.org/10.1016/j.neuroscience.2013.01.032.Suche in Google Scholar PubMed
92. Khan, MM, Raza, SS, Javed, H, Ahmad, A, Khan, A, Islam, F, et al.. Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox Res 2012;22:1–15. https://doi.org/10.1007/s12640-011-9295-2.Suche in Google Scholar PubMed
93. Filomeni, G, Graziani, I, De Zio, D, Dini, L, Centonze, D, Rotilio, G, et al.. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 2012;33:767–85. https://doi.org/10.1016/j.neurobiolaging.2010.05.021.Suche in Google Scholar PubMed
94. Kiasalari, Z, Baluchnejadmojarad, T, Roghani, M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease. Cell Mol Neurobiol 2016;36:521–30. https://doi.org/10.1007/s10571-015-0230-6.Suche in Google Scholar PubMed
95. Kim Ferrer, I, Martinez, A, Blanco, R, Dalfó, E, Carmona, M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J Neural Transm 2011;118:821–39. https://doi.org/10.1007/s00702-010-0482-8.Suche in Google Scholar PubMed
96. Lu, JH, Tan, JQ, Durairajan, SS, Liu, LF, Zhang, ZH, Ma, L, et al.. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 2012;8:98–108. https://doi.org/10.4161/auto.8.1.18313.Suche in Google Scholar PubMed
97. Song, JX, Lu, JH, Liu, LF, Chen, LL, Durairajan, SS, Yue, Z, et al.. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 2014;10:144–54. https://doi.org/10.4161/auto.26751.Suche in Google Scholar PubMed PubMed Central
98. Guo, YJ, Dong, SY, Cui, XX, Feng, Y, Liu, T, Yin, M, et al.. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 2016;60:2161–75. https://doi.org/10.1002/mnfr.201600111.Suche in Google Scholar PubMed PubMed Central
99. Ferretta, A, Gaballo, A, Tanzarella, P, Piccoli, C, Capitanio, N, Nico, B, et al.. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta 2014;1842:902–15. https://doi.org/10.1016/j.bbadis.2014.02.010.Suche in Google Scholar PubMed
100. Wu, Y, Li, X, Zhu, JX, Xie, W, Le, W, Fan, Z, et al.. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 2011;19:163–74. https://doi.org/10.1159/000328516.Suche in Google Scholar PubMed PubMed Central
101. Ryu, HW, Oh, WK, Jang, IS, Park, J. Amurensin G induces autophagy and attenuates cellular toxicities in a rotenone model of Parkinson’s disease. Biochem Biophys Res Commun 2013;433:121–6. https://doi.org/10.1016/j.bbrc.2013.02.053.Suche in Google Scholar PubMed
102. Liu, Z, Yu, Y, Li, X, Ross, CA, Smith, WW. Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 2011;63:439–44. https://doi.org/10.1016/j.phrs.2011.01.004.Suche in Google Scholar PubMed
103. Jiang, TF, Zhang, YJ, Zhou, HY, Wang, HM, Tian, LP, Liu, J, et al.. Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 2013;8:356–69. https://doi.org/10.1007/s11481-012-9431-7.Suche in Google Scholar PubMed
104. Kroemer, G, Mariño, G, Levine, B. Autophagy and the integrated stress response. Mol Cell 2010;40:280–93. https://doi.org/10.1016/j.molcel.2010.09.023.Suche in Google Scholar PubMed PubMed Central
105. Harris, H, Rubinsztein, DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 2011;8:108–17. https://doi.org/10.1038/nrneurol.2011.200.Suche in Google Scholar PubMed
106. Mcneill, A, Magalhaes, J, Shen, C, Chau, KY, Hughes, D, Mehta, A, et al.. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 2014;137:1481–95. https://doi.org/10.1093/brain/awu020.Suche in Google Scholar PubMed PubMed Central
107. Richter, F, Fleming, SM, Watson, M, Lemesre, V, Pellegrino, L, Ranes, et al.. A GCase chaperone improves motor function in a mouse model of synucleinopathy. Neurotherapeutics 2014;11:840–56. https://doi.org/10.1007/s13311-014-0294-x.Suche in Google Scholar PubMed PubMed Central
108. Ambrosi, G, Ghezzi, C, Zangaglia, R, Levandis, G, Pacchetti, C, Blandini, F. Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson’s disease cells. Neurobiol Dis 2015;82:235–42. https://doi.org/10.1016/j.nbd.2015.06.008.Suche in Google Scholar PubMed
109. Menzies, FM, Fleming, A, Caricasole, A, Bento, CF, Andrews, SP, Ashkenazi, A, et al.. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017;93:1015–34. https://doi.org/10.1016/j.neuron.2017.01.022.Suche in Google Scholar PubMed
110. Banerjee, R, Beal, MF, Thomas, B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 2010;33:541–9. https://doi.org/10.1016/j.tins.2010.09.001.Suche in Google Scholar PubMed PubMed Central
111. Abeliovich, A, Gitler, AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 2016;539:207–16. https://doi.org/10.1038/nature20414.Suche in Google Scholar PubMed
112. Ryan, E, Seehra, G, Sharma, P, Sidransky, E. GBA1-associated Parkinsonism: new insights and therapeutic opportunities. Curr Opin Neurol 2019;32:589–96. https://doi.org/10.1097/WCO.0000000000000715.Suche in Google Scholar PubMed
113. Djajadikerta, A, Keshri, S, Pavel, M, Prestil, R, Ryan, L, Rubinsztein, DC. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol 2020;432:2799–821. https://doi.org/10.1016/j.jmb.2019.12.035.Suche in Google Scholar PubMed
114. Bento, CF, Ashkenazi, A, Jimenez-Sanchez, M, Rubinsztein, DC. The Parkinson/’s disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun 2016;7:11803. https://doi.org/10.1038/ncomms11803.Suche in Google Scholar PubMed PubMed Central
115. Decressac, M, Mattsson, B, Weikop, P, Lundblad, M, Jakobsson, J, Bjorklund, A, et al.. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci USA 2013;110:E1817–26. https://doi.org/10.1073/pnas.1305623110.Suche in Google Scholar PubMed PubMed Central
116. Ceccariglia, S, Cargnoni, A, Silini, AR, Parolini, O. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 2020;16:28–37. https://doi.org/10.1080/15548627.2019.1630223.Suche in Google Scholar PubMed PubMed Central
117. Chen, HX, Liang, FC, Gu, P, Xu, BL, Xu, HJ, Wang, WT, et al.. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 2020;11:288. https://doi.org/10.1038/s41419-020-2473-5.Suche in Google Scholar PubMed PubMed Central
118. Oh, SH, Lee, SC, Kim, DY, Kim, HN, Shin, JY, Ye, BS, et al.. Mesenchymal stem cells stabilize axonal transports for autophagic clearance of α-synuclein in parkinsonian models. Stem Cell 2017;35:1934–47. https://doi.org/10.1002/stem.2650.Suche in Google Scholar PubMed
119. Park, HJ, Shin, JY, Kim, HN, Oh, SH, Lee, PH. Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol Aging 2014;35:1920–8. https://doi.org/10.1016/j.neurobiolaging.2014.01.028.Suche in Google Scholar PubMed
120. Crews, L, Spencer, B, Desplats, P, Patrick, C, Paulino, A, Rockenstein, E, et al.. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PloS One 2010;5:e9313. https://doi.org/10.1371/journal.pone.0009313.Suche in Google Scholar PubMed PubMed Central
121. Gao, Y, Wang, N, Liu, L, Liu, Y, Zhang, J. Relationship between mammalian target of rapamycin and autophagy in lipopolysaccharide-induced lung injury. J Surg Res 2016;201:356–63. https://doi.org/10.1016/j.jss.2015.11.018.Suche in Google Scholar PubMed
122. Santini, E, Heiman, M, Greengard, P, Valjent, E, Fisone, G. Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal 2009;2:ra36. https://doi.org/10.1126/scisignal.2000308.Suche in Google Scholar PubMed
123. Decressac, M, Björklund, A. mTOR inhibition alleviates L-DOPA-induced dyskinesia in parkinsonian rats. J Parkinsons Dis 2013;3:13–7. https://doi.org/10.3233/JPD-120155.Suche in Google Scholar PubMed
124. Moors, TE, Hoozemans, JJ, Ingrassia, A, Beccari, T, Parnetti, L, Chartier-Harlin, MC, et al.. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol Neurodegener 2017;12:11. https://doi.org/10.1186/s13024-017-0154-3.Suche in Google Scholar PubMed PubMed Central
125. Cerri, S, Blandini, F. Role of autophagy in Parkinson’s disease. Curr Med Chem 2019;26:3702–18. https://doi.org/10.2174/0929867325666180226094351.Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Potentials of autophagy enhancing natural products in the treatment of Parkinson disease
- Genetic polymorphisms of reproductive hormones and their receptors in assisted reproduction technology for patients with polycystic ovary syndrome
- Minireview
- Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review
- Original Articles
- Modifying effects of TNF-α, IL-6 and VDR genes on the development risk and the course of COVID-19. Pilot study
- Prevalence of ABCB1 3435C>T polymorphism in the Cuban population
- The association of cytochrome 7A1 and ATP-binding cassette G8 genotypes with type 2 diabetes among Jordanian patients
- CYP2C19*2 genetic polymorphism and incidence of in-stent restenosis in patients on clopidogrel: a matched case-control study
- Study of the pharmacokinetics of various drugs under conditions of antiorthostatic hypokinesia and the pharmacokinetics of acetaminophen under long-term spaceflight conditions
- Virgin coconut oil abrogates depression-associated cognitive deficits by modulating hippocampal antioxidant balance, GABAergic and glutamatergic receptors in mice
- Cnestis ferruginea Vahl ex DC (Connaraceae) downregulates expression of immediate early genes in kainic acid-induced temporal lobe epilepsy in mice
- Toxicological evaluation of hydroethanol leaf extract of Pupalia lappacea (Linn.) Juss. (Amaranthaceae) in rodents
- Short Communication
- Comparison of different autoanalyzers for the determination of lymphocyte and neutrophil counts in mouse blood
Artikel in diesem Heft
- Frontmatter
- Reviews
- Potentials of autophagy enhancing natural products in the treatment of Parkinson disease
- Genetic polymorphisms of reproductive hormones and their receptors in assisted reproduction technology for patients with polycystic ovary syndrome
- Minireview
- Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review
- Original Articles
- Modifying effects of TNF-α, IL-6 and VDR genes on the development risk and the course of COVID-19. Pilot study
- Prevalence of ABCB1 3435C>T polymorphism in the Cuban population
- The association of cytochrome 7A1 and ATP-binding cassette G8 genotypes with type 2 diabetes among Jordanian patients
- CYP2C19*2 genetic polymorphism and incidence of in-stent restenosis in patients on clopidogrel: a matched case-control study
- Study of the pharmacokinetics of various drugs under conditions of antiorthostatic hypokinesia and the pharmacokinetics of acetaminophen under long-term spaceflight conditions
- Virgin coconut oil abrogates depression-associated cognitive deficits by modulating hippocampal antioxidant balance, GABAergic and glutamatergic receptors in mice
- Cnestis ferruginea Vahl ex DC (Connaraceae) downregulates expression of immediate early genes in kainic acid-induced temporal lobe epilepsy in mice
- Toxicological evaluation of hydroethanol leaf extract of Pupalia lappacea (Linn.) Juss. (Amaranthaceae) in rodents
- Short Communication
- Comparison of different autoanalyzers for the determination of lymphocyte and neutrophil counts in mouse blood