Home Prevalence of ABCB1 3435C>T polymorphism in the Cuban population
Article
Licensed
Unlicensed Requires Authentication

Prevalence of ABCB1 3435C>T polymorphism in the Cuban population

  • Idania Rodeiro Guerra ORCID logo EMAIL logo , Jose Herrea ORCID logo , Elizabeth Cuétara ORCID logo , Gabino Garrido ORCID logo , Elizabeth Reyes , Ioanna Martínez , Carlos L. Pérez ORCID logo , Gisselle Fernández , Ivones Hernández-Balmaseda , René Delgado , Julia C. Stingl and Wim Vanden Berghe EMAIL logo
Published/Copyright: December 6, 2021

Abstract

Objectives

ABCB1 gene polymorphisms can modify P-glycoprotein function with clinical consequences.

Methods

The 3435C>T polymorphism prevalence was analyzed using oligonucleotide probes and next-generation sequencing in 421 unrelated healthy individuals living in Cuba. Data were stratified by gender, ethnic background and residence. The genotype and allelic frequencies were determined.

Results

The genotype distribution met the Hardy–Weinberg equilibrium assumption. The allelic frequency was 63.5% for the 3435C variant. The genotype frequencies were 41.1% for CC, 44.9% for CT and 14.0% for TT. The allele and genotype distributions differed between individuals living in La Habana and Santiago de Cuba (p<0.05) when ethnic background was analyzed. The allelic distribution was similar among Admixed and Black subjects, and they differed from Caucasians. The CC genotype was equally distributed among Admixed and Black subjects, and they differed from Caucasians. The TT genotype frequency differed between Caucasians and Admixed. The CT genotype was distributed differently among the three groups. Similar distribution was obtained in Brazilians, whereas some similarities were observed in African, Spanish and Chinese populations, consistent with the mixed Cuban ethnic origin.

Conclusions

This is the first report on allele and genotype frequencies of the 3435C>T polymorphism in Cuba, which may support personalized medicine programs.


Corresponding authors: Idania Rodeiro Guerra, PhD, Departamento de Farmacología, Instituto de Ciencias del Mar (ICIMAR), Loma y 37, Alturas del Vedado, P.O. Box 10400, La Habana, Cuba, E-mail: ; and Wim Vanden Berghe, PhD, Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium, E-mail:

  1. Research funding: This study was supported by the research project “Desarrollo de algoritmos de toma de decisión basados en conocimiento experto como herramientas para introducir en Cuba el manejo terapéutico personalizado del cáncer de pulmón” (PNCB, MES-CITMA, La Habana, Cuba) and the VLIR TEAM/Own Initiatives-Programme 2016 ZEIN2016PR420. Authors may also thank Dr. Adrián Llerena for the revision and suggestions made to the manuscript.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Informed consent was obtained from all individuals included in this study.

  5. Ethical approval: The study was conducted in agreement with the recommendations of the Ethics Committee from the National Institute of Oncology and Radiobiology, Havana, Cuba.

References

1. Yan-Hong, W, Yong-Hua, L, Yan, YL. MDRl gene polymorphisms and clinical relevance. Acta Genetica Sin 2006;33:93–104.10.1016/S0379-4172(06)60027-9Search in Google Scholar

2. Balram, C, Sharma, A, Sivathasan, C, Lee, E. Frequency of 3435C>T single nucleotide ABCB1 genetic polymorphism in an Asian population: phenotypic–genotypic correlates. Br J Clin Pharmacol 2002;56:78–83.10.1046/j.1365-2125.2003.01820.xSearch in Google Scholar PubMed PubMed Central

3. Bruhn, O, Cascorbi, I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expet Opin Drug Metabol Toxicol 2014;10:1337–54. https://doi.org/10.1517/17425255.2014.952630.Search in Google Scholar PubMed

4. Chaudhry, SR, Muhammad, S, Eidens, M, Klemm, M, Khan, D, Efferth, T, et al.. Pharmacogenetic prediction of individual variability in drug response based on CYP2D6, CYP2C9 and CYP2C19 genetic polymorphisms. Curr Drug Metabol 2014;15:711–8. https://doi.org/10.2174/1389200215666141125121952.Search in Google Scholar PubMed

5. Kirchheiner, J, Seeringer, A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007;1770:489–94. https://doi.org/10.1016/j.bbagen.2006.09.019.Search in Google Scholar PubMed

6. Abuhaliema, AM, Yousef, AM, El-Madany, NN, Bulatova, NR, Awwad, NM, Yousef, MA, et al.. Influence of genotype and haplotype of MDR1 (C3435T, G2677A/T, C1236T) on the incidence of breast cancer-a case-control study in Jordan. Asian Pac J Cancer Prev APJCP 2016;17:261–6. https://doi.org/10.7314/apjcp.2016.17.1.261.Search in Google Scholar PubMed

7. Chen, G, Quan, S, Hu, Q, Wang, L, Xia, X, Wu, J. Lack of association between MDR1 C3435T polymorphism and chemotherapy response in advanced breast cancer patients: evidence from current studies. Mol Biol Rep 2012;39:5161–8. https://doi.org/10.1007/s11033-011-1312-2.Search in Google Scholar PubMed

8. Jaramillo-Rangel, G, Ortega-Martínez, M, Cerda-Flores, RM, Barrera-Saldaña, HA. C3435T polymorphism in the MDR1 gene and breast cancer risk in northeastern Mexico. Int J Clin Exp Pathol 2018;11:904–9.Search in Google Scholar

9. Walsh, I, Bowman, M, Santarriaga, I, Rodriguez, A, Clarka, P. Synonymous codon substitutions perturb co-translational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci USA 2020;117:3528–34. https://doi.org/10.1073/pnas.1907126117.Search in Google Scholar PubMed PubMed Central

10. Kimchi-Sarfaty, C, Oh, J, Kim, I, Sauna, Z, Calcagno, A, Ambudkar, S, et al.. “Silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007;315:525–8. https://doi.org/10.1126/science.1135308.Search in Google Scholar PubMed

11. Sheng, X, Zhang, L, Tong, N, Luo, D, Wang, D, Xu, M, et al.. MDR1 3435T polymorphism and cancer risk: a meta-analysis based on 39 case–control studies. Mol Biol Rep 2012;39:7273–49. https://doi.org/10.1007/s11033-012-1554-7.Search in Google Scholar PubMed

12. Li, J, Yang, C, Wang, W, Han, X, Sun, L. Association of ABCB1 C3435T and C1236T gene polymorphisms with the susceptibility to acute myeloid leukemia in a Chinese population. Int J Clin Exp Pathol 2016;9:8464–70.Search in Google Scholar

13. Hee-Jun, K, Seock-Ah, I, Bhumsuk, K, Hye, H, Kyung, L, Kim, T, et al.. ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci 2015;106:86–93. https://doi.org/10.1111/cas.12560.Search in Google Scholar

14. Beer, B, Erb, R, Pavlic, M, Ulmer, H, Giacomuzzi, S, Riemer, Y, et al.. Association of polymorphisms in pharmacogenetic candidate genes (OPRD1, GAL, ABCB1, OPRM1) with opioid dependence in European population: a case-control study. PLoS One 2013;8:e75359. https://doi.org/10.1371/journal.pone.0075359.Search in Google Scholar

15. Verstuyft, C, Schwab, M, Schaeffeler, E, Kerb, R, Brink- mann, U, Jaillon, P, et al.. Digoxin pharmacokinetics and MDR 1 genetic polymorphisms. Eur J Clin Pharmacol 2003;58:809–12. https://doi.org/10.1007/s00228-003-0567-5.Search in Google Scholar

16. González, I, Pérez, B, Álvarez, M, Dorado, P, Llerena, A. Estudio farmacogenético del polimorfismo metabólico de la debrisoquina (CYP2D6) en la población cubana en relación con la española. Med Clin 2007;128:772–4.10.1157/13106328Search in Google Scholar

17. Naranjo, M, Rodrigues-Soares, F, Peñas-Lledo, E, Tarazona-Santos, E, Fariñas, H, Rodeiro, I, et al.. Interethnic variability in CYP2D6, CYP2C9, and CYP2C19 genes and predicted drug metabolism phenotypes among 6060 Ibero- and native Americans: RIBEF-CEIBA consortium report on population pharmacogenomics. OMICS 2018;22:575–88. https://doi.org/10.1089/omi.2018.0114.Search in Google Scholar

18. Schaeffeler, E, Eichelbaum, M, Brinkmann, U. Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet 2001;358:383–4. https://doi.org/10.1016/s0140-6736(01)05579-9.Search in Google Scholar

19. Marzolini, C, Paus, E, Buclin, T, Kim, R. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004;75:13–33. https://doi.org/10.1016/j.clpt.2003.09.012.Search in Google Scholar PubMed

20. Ameyaw, MM, Regateiro, F, Li, T, Liu, X, Tariq, M, Mobarek, A, et al.. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001;11:217–21. https://doi.org/10.1097/00008571-200104000-00005.Search in Google Scholar PubMed

21. de la Calle, R, editor. Antropología de la Población Adulta Cubana. La Habana: Editorial Científico Técnica; 1984:53 p.Search in Google Scholar

22. Statistics National Office of Cuba. Censo de Población y Viviendas Cuba. 2012. Available from: http://www.onei.gob.cu/sites/default/files/informe_nacional_censo_0.pdf [Accessed 13 Jul 2020].Search in Google Scholar

23. Cintado, A, Companioni, O, Nazabal, M, Camacho, H, Ferrer, A, Fernández De Cossio, M, et al.. Admixture estimates for the population of Havana City. Ann Hum Biol 2009;36:350–60. https://doi.org/10.1080/03014460902817984.Search in Google Scholar PubMed

24. García, M, Estrada, M, Gutiérrez, A, Ballester, A, González, R. Glyoxalase I polymorphism and racial admixture in the Cuban population. Hum Genet 1982;61:50–1. https://doi.org/10.1007/BF00291332.Search in Google Scholar PubMed

25. Marcheco, B, Parra, EJ, Fuentes, E, Salas, A, Buttenschon, H, Demontis, D, et al.. Cuba: exploring the history of admixture and the genetic basis of pigmentation using autosomal and uniparental markers. PLoS Genet 2014;10:e1004488. https://doi.org/10.1371/journal.pgen.1004488.Search in Google Scholar PubMed PubMed Central

26. Llerena, A, Dorado, P, Ramírez, R, Calzadilla, L, Peñas, E, Álvarez, M, et al.. CYP2D6 -1584C>G promoter polymorphism and debrisoquine ultrarapid hydroxylation in healthy volunteers. Pharmacogenomics 2013;14:1973–7. https://doi.org/10.2217/pgs.13.181.Search in Google Scholar PubMed

27. Rodrigues, F, Peñas, E, Tarazona, E, Sosa, M, Terán, E, López, M, et al.. Clinical pharmacology therapeutics. Genomic ancestry, CYP2D6, CYP2C9, and CYP2C19 among Latin Americans 2019. Clin Pharmacol Ther 2020;107:257–68. https://doi.org/10.1002/cpt.1598.Search in Google Scholar PubMed

28. Pereira, E, Ferreira, R, Hermelin, B, Thomas, G, Bernard, C, Bertrand, V, et al.. Recurrent and novel LDL receptor gene mutations causing heterozygous familial hypercholesterolemia in La Habana. Hum Genet 1995;96:319–22. https://doi.org/10.1007/bf00210415.Search in Google Scholar

29. Camacho, H, Nazábal, M. Análisis de asociación de polimorfismos del gen COMT y la esquizofrenia en una muestra familiar cubana. Biotecnol Apl 2011;28:91–5.Search in Google Scholar

30. Sosa-Macias, M, Moya, G, Llerena, A, Ramírez, R, Terán, E, Peñas-Lledó, E, et al.. Population pharmacogenetics of Ibero-Latinoamerican populations (MESTIFAR 2014). Pharmacogenomics 2015;16:673–6. https://doi.org/10.2217/pgs.15.32.Search in Google Scholar PubMed

31. Céspedes-Garro, C, Jiménez-Arce, G, Naranjo, MG, Barrantes, R, Llerena, A. CEIBA.FP consortium of the Ibero-American network of pharmacogenetics & pharmacogenomics RIBEF. Ethnic background and CYP2D6 genetic polymorphisms in Costa Ricans. Rev Biol Trop 2014;62:1659–71.10.15517/rbt.v62i4.12916Search in Google Scholar

32. Melin, K, Moo, J-Y, Qi, Q, Hernandez-Suarez, DF, Duconge, J, Hua, S, et al.. Prevalence of pharmacogenomic variants affecting the efficacy of clopidogrel therapy in the Hispanic Community Health Study/Study of Latinos cohort. Pharmacogenomics 2019;20:75–83. https://doi.org/10.2217/pgs-2018-0148.Search in Google Scholar PubMed PubMed Central

33. Auton, A, Brooks, LD, Durbin, RM, Garrison, EP, Kang, HM, Korbel, JO, et al.. 1000 Genomes Project Consortium. A global reference for human genetic variation, the 1000 Genomes Project Consortium. Nature 2015;526:68–74. https://doi.org/10.1038/nature15393.Search in Google Scholar PubMed PubMed Central

34. Freeman, G, Halton, J. Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 1951;38:141–9. https://doi.org/10.2307/2332323.Search in Google Scholar

35. Orengo-Mercado, C, Nieves, B, López, L, Vallés-Ortiz, N, Renta, J, Santiago-Borrero, P, et al.. Frequencies of functional polymorphisms in three pharmacokinetic genes of clinical interest within the admixed Puerto Rican population. J Pharmacogenomics Pharmacoproteomics 2013;4:627–34. https://doi.org/10.4172/2153-0645.1000113.Search in Google Scholar PubMed PubMed Central

36. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. https://www.R-project.org/ [Accessed 4 Apr 2021].Search in Google Scholar

37. Nakazawa, M. FMSB: functions for medical statistics book with some demographic data. R package version 0.7.0; 2019. https://CRAN.R-project.org/package=fmsb [Accessed 4 Apr 2021].Search in Google Scholar

38. Sinha, M, Larkin, EK, Elston, RC, Redline, S. Self-reported race and genetic admixture. N Engl J Med 2006;354:421–2. https://doi.org/10.1056/nejmc052515.Search in Google Scholar

39. Tang, H, Quertermous, T, Rodriguez, B, Kardia, SL, Zhu, X, Brown, A, et al.. Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 2005;76:268–75. https://doi.org/10.1086/427888.Search in Google Scholar PubMed PubMed Central

40. Dumitrescu, L, Ritchie, MD, Brown-Gentry, K, Pulley, JM, Basford, M, Denny, JC. Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records. Genet Med 2010;12:648–50. https://doi.org/10.1097/gim.0b013e3181efe2df.Search in Google Scholar

41. Hall, JB, Dumitrescu, L, Dilks, HH, Crawford, DC, Bush, WS. Accuracy of administratively-assigned ancestry for diverse populations in an electronic medical record-linked Biobank. PLoS One 2014;9:e99161. https://doi.org/10.1371/journal.pone.0099161.Search in Google Scholar PubMed PubMed Central

42. Spector, MD, Brummel, SS, Nievergelt, CM, Maihofer, AX, Singh, KK, Purswani, MU, et al.. Genetically determined ancestry is more informative than self-reported race in HIV-infected and -exposed children. Medicine 2016;95:e4733. https://doi.org/10.1097/md.0000000000004733.Search in Google Scholar PubMed PubMed Central

43. Lamason, RL, Mohideen, MA, Mest, JR, Wong, AC, Norton, HL. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 2005;310:1782–6. https://doi.org/10.1126/science.1116238.Search in Google Scholar PubMed

44. Aurel, CA, Horsmans, Y, Issaoui, B, Gala, L. Single nucleotide polymorphisms of ABCB1 (MDR1) gene and distinct haplotype profile in a West Black African population. Eur J Clin Pharmacol 2005;61:97–102. https://doi.org/10.1007/s00228-004-0879-0.Search in Google Scholar PubMed

45. Dandara, C, Lombard, Z, Du, I, McLellan, T, Norris, S, Ramsay, M. Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics 2011;12:1663–70. https://doi.org/10.2217/pgs.11.106.Search in Google Scholar PubMed

46. Bernal, ML, Sinues, B, Fanlo, A, Mayayo, E. Frequency distribution of C3435T mutation in exon 26 of the MDR1 gene in a Spanish population. Ther Drug Monit 2003;25:107–11. https://doi.org/10.1097/00007691-200302000-00016.Search in Google Scholar PubMed

47. Vicente, J, Sinues, B, Fanlo, A, Vasquez, P, Medina, JC, Martinez, B. Polymorphism C3435T of the MDR1 gene in Central Americans and Spaniards. Mol Biol Rep 2008;35:473–8. https://doi.org/10.1007/s11033-007-9109-z.Search in Google Scholar PubMed

48. Estrela, RCE, Ribeiro, FS, Carvallo, RS, Gregorio, SP, Dias, E, Struchiner, CJ, et al.. Distribution of AB CB1 polymorphisms among Brazilians: impact of population admixture. Pharmacogenomics 2008;9:267–76. https://doi.org/10.2217/14622416.9.3.267.Search in Google Scholar PubMed

49. Santos, CJL, Soares, R, Santos, D, Nascimento, RM, Coelho, G, Nicolau, JC, et al.. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet 2011;12:13. https://doi.org/10.1186/1471-2350-12-13.Search in Google Scholar PubMed PubMed Central

50. Ayala, E, Pool, M, Barbosa, E, Sandoval, J, Salazar, A. Geographic distribution of the 3435C>T polymorphism of the MDR1 gene in Peruvian populations. Drug Metab Pers Ther 2019;34:20180041. https://doi.org/10.1515/dmpt-2018-0041.Search in Google Scholar PubMed

51. Sinues, B, Vicente, J, Fanlo, A, Mayayo, M, González, F, Sánchez, D, et al.. CYP3A5*3, CYP3A4*1B and MDR1 C3435T genotype distributions in Ecuadorians. Dis Markers 2008;24:325–31. https://doi.org/10.1155/2008/750804.Search in Google Scholar PubMed PubMed Central

52. Isaza, C, Henao, J, Beltrán, L, Porras, L, Gonzalez, M, Cruz, R, et al.. Genetic variants associated with addictive behavior in Colombian addicted and non-addicted to heroin or cocaine. Colomb Méd 2013;443:19–25. https://doi.org/10.25100/cm.v44i1.1039.Search in Google Scholar

53. Ozawa, S, Soyama, A, Saeki, M, Fukushima-Uesaka, H, Itoda, M, Koyano, S, et al.. Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metabol Pharmacokinet 2004;19:83–95. https://doi.org/10.2133/dmpk.19.83.Search in Google Scholar PubMed

54. Sandoval, JR, Salazar-Granara, A, Acosta, O, Castillo-Herrera, W, Fujita, R, Pena, S, et al.. Tracing the genomic ancestry of Peruvians reveals a major legacy of pre-Columbian ancestors. J Hum Genet 2013;58:627–34. https://doi.org/10.1038/jhg.2013.73.Search in Google Scholar PubMed

55. Umamaheswaran, G, Kumar, D, Kayathiri, D, Rajan, S, Shewade, D, Dkhar, S, et al.. Inter and intra-ethnic differences in the distribution of the molecular variants of TPMT, UGT1A1 and MDR1 genes in the South Indian population. Mol Biol Rep 2012;39:6343–51. https://doi.org/10.1007/s11033-012-1456-8.Search in Google Scholar PubMed

56. Zhai, X, Wang, H, Zhu, X. Gene polymorphisms of ABC transporters are associated with clinical outcomes in children with acute lymphoblastic leukemia. Arch Med Sci 2012;8:659–711. https://doi.org/10.5114/aoms.2012.30290.Search in Google Scholar PubMed PubMed Central

57. Liu, RR. The role of multidrug resistance gene 1 polymorphism to prognosis of adult acute lymphoblastic leukemia patients. Central South University. Pharmacogenomics J 2008;12:111–9.Search in Google Scholar

58. Lü, H, Du, ZZ, Wang, W. Relationship between genetic polymorphism of multidrug resistance 1 gene and the risk of childhood acute lymphocytic leukemia. Zhonghua Er Ke Za Zhi 2012;50:692–6.Search in Google Scholar

Received: 2020-10-14
Accepted: 2021-09-15
Published Online: 2021-12-06

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Reviews
  3. Potentials of autophagy enhancing natural products in the treatment of Parkinson disease
  4. Genetic polymorphisms of reproductive hormones and their receptors in assisted reproduction technology for patients with polycystic ovary syndrome
  5. Minireview
  6. Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review
  7. Original Articles
  8. Modifying effects of TNF-α, IL-6 and VDR genes on the development risk and the course of COVID-19. Pilot study
  9. Prevalence of ABCB1 3435C>T polymorphism in the Cuban population
  10. The association of cytochrome 7A1 and ATP-binding cassette G8 genotypes with type 2 diabetes among Jordanian patients
  11. CYP2C19*2 genetic polymorphism and incidence of in-stent restenosis in patients on clopidogrel: a matched case-control study
  12. Study of the pharmacokinetics of various drugs under conditions of antiorthostatic hypokinesia and the pharmacokinetics of acetaminophen under long-term spaceflight conditions
  13. Virgin coconut oil abrogates depression-associated cognitive deficits by modulating hippocampal antioxidant balance, GABAergic and glutamatergic receptors in mice
  14. Cnestis ferruginea Vahl ex DC (Connaraceae) downregulates expression of immediate early genes in kainic acid-induced temporal lobe epilepsy in mice
  15. Toxicological evaluation of hydroethanol leaf extract of Pupalia lappacea (Linn.) Juss. (Amaranthaceae) in rodents
  16. Short Communication
  17. Comparison of different autoanalyzers for the determination of lymphocyte and neutrophil counts in mouse blood
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dmpt-2020-0156/html
Scroll to top button